Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Модуль 1. Элементарные функции и пределы

КАЛЕНДАРНЫЙ ПЛАН

ДЛЯ СТУДЕНТОВ ВСЕХ ФАКУЛЬТЕТОВ

КУРСА 1 СЕМЕСТРА на 2012/2013 уч. год

Кроме специальностей факультетов: ФН2, ГУИМЦ, ИУ-9, РК-6, АКФ-3, Юр

МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Основная и дополнительная литература

Основная литература (ОЛ)

1. Морозова В.Д. Введение в анализ. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2005. – 408 с.

2. Иванова Е.Е. Дифференциальное исчисление функций одного аргумента. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2001. – 408 с.

3. Пискунов Н.С. Дифференциальное и интегральное исчисления для втузов. Т. 1. – М.: Интеграл-Пресс, 2006. – 416 с.

4. Сборник задач по математике для втузов. Ч. 1. Линейная алгебра и основы математического анализа: Учеб. пособие для втузов / Под ред. А.В. Ефимова, Б.П. Демидовича. – М.: Наука, 1993. – 478 с

Дополнительная литература (ДЛ)

1. Ильин В.А., Позняк Э.Г. Основы математического анализа. Ч. 1. – 4-е изд., перераб. и доп. – М.: Наука, 1982. – 616 с.

2. Кудрявцев Л.Д. Курс математического анализа. В 3-х т. Т. 1. – М.: Высшая школа, 1988. – 718 с.

3. Бугров Я.С., Никольский С.М. Дифференциальное и интегральное исчисление. – М.: Наука, 1988. – 431 с.

4. Задачи и упражнения по математическому анализу для втузов / Под ред. Б.П. Демидовича. – М.: Астрель, 2003. – 472 с.

5. Вся высшая математика: Учебник для втузов: В 6 т. / Краснов М.Л., Киселев А.И., Макаренко и др. – Т. 1. – М.: Эдиториал УРСС, 2000. – 328 с.

Методические пособия, изданные в МГТУ (МП)

1. Галкин С.В. Математический анализ. Методические указания по материалам лекций для подготовки к экзамену в первом семестре. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. – 116 с.

2. Грибов А.Ф., Котович А.В., Минеева О.М. Кривые на плоскости, заданные параметрически и в полярной системе координат. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2004.

3. Казанджан Э.П. Исследование функций и построение графиков. – М.: Изд-во МГТУ им. Н.Э. Баумана, 1995.

4. Ильичев А.Т., Кузнецов В.В., Фаликова И.Д. Графики элементарных функций. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2004.

5. Соболев С. К., Ильичев А. Т. Исследование и построение плоских кривых, заданных параметрически и в полярных координатах. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. – 80 с.

6. Казанджан Э.П., Казанджан Г.П. Вычисление пределов. – М.: Изд-во МГТУ им. Н.Э. Баумана, 1995.

7. Кузнецов В.В., Коньков А.А., Соболев С.К. Множества и элементы математической логики. – М.: МГТУ, 1989. – 48 с.

8. Под ред. Ивановой Е.Е. Введение в анализ.-М., МГТУ, 1990.-85с.

9. Казанджан Г.П., Казанджан Э.П. Рабочий справочник по математике. – М., МГТУ, 2002.

10. Михайлова Т.Ю., Поляшова Р.Г., Титов К.В. Исследование свойств функций и построение графиков. Формула Тейлора и ее приложения. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2002.

11. Казанджан Э.П. Графики. Сборник задач с примерами решений по исследованию функций и построению графиков. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2004.

12. Дуров В.В., Мастихин А.В., Савин А.С. Пределы и непрерывность функций. – М.: Изд-во МГТУ им. Н.Э. Баумана, 2004. – 62 с.

Электронные ресурсы (ЭР)

1. Иванков П.Л. Конспект лекций по математическому анализу // электронный ресурс http://mathmod.bmstu.ru/

Лекции

Модуль 1. Элементарные функции и пределы

Лекция 1. Множество R действительных чисел, промежутки. Окрестности конечной точки и бесконечности. Ограниченные и неограниченные множества в R. Точные верхняя и нижняя грани множества. Функция, ее график. Композиция функций. Классы числовых функций (монотонные, ограниченные, четные, периодичные). Обратимые функции. Класс элементарных функций.

ОЛ-1 гл.1, 2, 3.

Лекция 2. Числовая последовательность и ее предел. Основные свойства пределов последовательностей (предел постоянной, единственность предела, ограниченность сходящейся последовательности). Арифметические операции над сходящимися последовательностями. Критерий Коши сходимости последовательности. Сходимость ограниченной монотонной последовательности. Число . Гиперболические функции.

ОЛ-1 гл. 6.

Лекция 3. Два понятия предела функции в точке (предел по Коши и предел по Гейне). Теорема об эквивалентности этих понятий. Геометрическая иллюстрация предела. Предел функции в бесконечности. Бесконечные пределы. Единственность предела функции. Локальная ограниченность функции, имеющей конечный предел. Теорема о сохранении функцией знака своего предела.

ОЛ-1, пп. 7.1, 7.3, 7.4; ОЛ-3, гл. II, §§ 2, 3, 5.

Лекция 4. Предельный переход в неравенстве. Теорема о пределе промежуточной функции. Односторонние пределы. Бесконечно малые функции. Связь функции, ее предела и бесконечно малой. Свойства бесконечно малых функций. Арифметические операции с функциями, имеющими пределы.

ОЛ-1, пп. 7.4–7.6; ОЛ-3, гл. II, §§ 4, 5.

Лекция 5. Теорема о замене переменной в пределе (о пределе сложной функции). Бесконечно большие функции, их связь с бесконечно малыми. Первый и второй замечательные пределы. Сравнение функций при данном стремлении аргумента. Теоремы об эквивалентных функциях.

ОЛ-1 пп. 7.6–7.7; гл.10; ОЛ-3, гл. II, §§ 6, 7, 11.

Лекция 6. Порядок малости (или роста) функции при данном стремлении, выделение ее главной части. Применение к вычислению пределов. Различные подходы к понятию непрерывности, их эквивалентность. Свойства функций, непрерывных в точке.

ОЛ-1, пп. 9.1–9.3; ОЛ-3, гл. II, § 9.

Лекции 7-8. Односторонняя непрерывность функции в точке. Непрерывность функции на промежутке (в частности, на отрезке). Непрерывность основных элементарных функций (док-во для многочлена и синуса). Точки разрыва функций, их классификация. Свойства функций, непрерывных на отрезке. Теорема о непрерывности обратной функции (без док-ва). Асимптоты графика функции.

ОЛ-1, пп. 9.3–9.4; ОЛ-3, гл. II, §§ 9, 10, гл. V, §10.



<== предыдущая лекция | следующая лекция ==>
III. Перечень литературы и нормативных правовых актов | И откроется остров сокровищ
Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 438 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинать всегда стоит с того, что сеет сомнения. © Борис Стругацкий
==> читать все изречения...

2298 - | 2049 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.