Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Механизм окислительного декарбоксилирования пирувата




Окислительное декарбоксилирование пировиноградной кислоты

Пировиноградная кислота связывает гликолиз с циклом трикарбоновых кислот. Пируват переносится из цитозоля в матрикс митохондрий с помощью переносчика по механизму симпорта с протоном. В матриксе митохондрий пируват превращается в ацетил-КоА. Этот процесс называется окислительное декарбоксилирование пирувата и катализируется пируватдегидрогеназным комплексом (пируватдегидрогеназной системой). Высокая концентрация пируватдегидрогеназного комплекса обнаружена в сердечной мышце и почках.

Пируватдегидрогеназный комплекс является классическим мультиферментным комплексом, в котором промежуточные продукты остаются связанными на поверхности молекулы фермента до образования конечного продукта.

В состав пируватдегидрогеназного комплекса входит 3 фермента и 5 кофакторов. I-й фермент – пируватдегидрогеназа содержит кофактор тиаминпирофосфат (производное витамина В1); II-й фермент – дигидролипоилтрансацетилаза содержит кофакторы липоевую кислоту (ЛК, 6,8-дитиооктановая кислота) и кофермент А (НS-КоА), причем остаток липоевой кислоты присоединен к апоферменту путем образования амидной связи между карбоксильной группой ЛК и ε-аминогруппой лизина белка (образуется длинная «рука», состоящая из 13 атомов углерода); III-й фермент - дигидролипоилдегидрогеназа содержит кофакторы ФАД и НАД+.

Механизм окислительного декарбоксилирования пирувата

I этап. Пируват взаимодействует с кофактором пируватдегидрогеназы тиаминпирофосфатом. Основную роль играет второй углеродный атом тиазольного кольца ТПФ, который легко теряет протон, превращаясь в карбанион. Карбанион атакует частично положительно заряженный α-углеродный атом пирувата с возникновением связи С−С. Сильно электрофильный атом азота в карбоксиэтил-ТПФ способствует его декарбоксилированию с образованием гидроксиэтил-ТПФ.

 

II этап. В следующей реакции, катализируемой дигидролипоилтрансацетилазой, гидроксиэтил-ТПФ взаимодействует с липоевой кислотой. Происходит перенос гидроксиэтильной группы на один из атомов серы ЛК. При этом гидроксиэтильная группа окисляется в ацетильную. В процессе окисления гидроксиэтильной группы и восстановления SH-группы ЛК возникает макроэргическая связь. Затем ацетильный остаток переносится на второй кофермент дигидролипоилтрансацетилазы – HS-KoA, а ЛК полностью восстанавливается. Образованный ацетил-КоА отделяется от полиферментного комплекса.

III этап. Восстановленная форма ЛК окисляется дигидролипоилдегидрогеназой.

3. Регуляция пируватдегидрогеназного комплекса. Превращение пирувата в ацетил-КоА – процесс необратимый. Поэтому синтез глюкозы из ацетил-КоА невозможен. Обычно ацетил-КоА далее превращается 2-мя путями: 1) ацетильная группа ацетил-КоА окисляется до СО2 и Н2О через ЦТК и сопряженные цепи переноса электронов с выделением и запасанием энергии в виде АТФ; 2) используется для синтеза кетоновых тел, холестерола и жирных кислот.

Пируватдегидрогеназный комплекс регулируется методом фосфорилирования-дефосфорилирования. Повышение величин отношений НАДН/НАД+, ацетил-КоА/КоА или АТФ/АДФ способствует фосфорилированию фермента протеинкиназой и дезактивации комплекса. Следовательно, пируватдегидрогеназный комплекс инактивируется, если клетка богата энергией и биосинтетическими предшественниками.

Пируват и АДФ, наоборот, активируют пируватдегидрогеназный комплекс посредством ингибирования протеинкиназы.

Вазопрессин активирует пируватдегидрогеназный комплекс путем повышения концентрации ионов кальция в митохондриях, которые активируют протеинфосфатазу (дефосфорилирование фермента). Инсулин также усиливает превращение пирувата в ацетил-КоА через дефосфорилирование пируватдегидрогеназного комплекса.

Цикл трикарбоновых кислот

Вторым компонентом общего пути катаболизма является ЦТК. Этот цикл был открыт в 1937 г. Кребсом и Джонсоном. В 1948 г. Кеннеди и Ленинджер доказали, что ферменты ЦТК локализованы в матриксе митохондрий.

4.1. Химизм цикла трикарбоновых кислот. Свободную уксусную кислоту невозможно окислить путем дегидрирования. Поэтому она в активной форме (ацетил-КоА) предварительно связывается с оксалоацетатом (ЩУК, щавелевоуксусной кислотой), в результате чего образуется цитрат.

1. Ацетил-КоА соединяется с оксалоацетатом в реакции альдольной конденсации, катализируемой цитратсинтазой. Образуется цитрил-КоА. Цитрил-КоА при участии воды гидролизуется до цитрата и НS-КоА.

2. Аконитат-гидратаза(а конитаза) катализирует превращение цитрата в изоцитрат через стадию цис-аконитовой кислоты. Аконитаза по механизму действия одновременно гидратаза и изомераза.

3. Изоцитратдегидрогеназа катализирует дегидрирование изолимонной кислоты в оксалосукцинат (щавелевоянтарную кислоту), которая затем декарбоксилируется в 2-оксоглутарат (α-кетоглутарат). Коферментом является НАД+ (в митохондриях) и НАДФ+ (в цитозоле и митохондриях).

4. 2-Оксоглутаратдегидрогеназный комплекс (α-кетоглутаратдегидрогеназный комплекс) катализирует окислительное декарбоксилирование 2-оксоглутарата в сукцинил-КоА. Мультиферментный 2-оксоглутаратдегидрогеназный комплекс похож на пируватдегидрогеназный комплекс и процесс протекает аналогично окислительному декарбоксилированию пирувата.

5. Сукцинилтиокиназа катализирует расщепление сукцинил-КоА на янтарную кислоту и кофермент А. Энергия расщепления сукцинил-КоА накапливается в виде гуанозинтрифосфата (ГТФ). В сопряженной реакции перефосфорилирования АДФ фосфорилируется в АТФ, а освобождающиеся молекулы ГДФ могут вновь фосфорилироваться (субстратное фосфорилирование). У растений фермент специфичен к АДФ и АТФ.

6. Сукцинатдегидрогеназа катализирует превращение сукцината в фумаровую кислоту. Фермент стереоспецифичен, является интегральным белком, так как вмонтирован во внутреннюю мембрану митохондрий и в качестве простетических групп содержит ФАД и железосерные белки. ФАДН2 не отделяется от фермента, а два электрона далее передаются на кофермент Q цепи переноса электронов внутренней мембраны митохондрий.

7. Фумарат-гидратаза (фумараза) катализирует превращение фумаровой кислоты в яблочную (малат) с участием воды. Фермент стереоспецифичен, образует только L-малат.

8. Малатдегидрогеназа катализирует окисление яблочной кислоты в оксалоацетат. Кофермент малатдегидрогеназы - НАД+. Далее оксалоацетат вновь конденсируется с ацетил-КоА и цикл повторяется.

 

 

4.2. Биологическое значение и регуляция цикла трикарбоновых кислот. Цикл трикарбоновых кислот – компонент общего пути катаболизма, в котором происходит окисление топливных молекул углеводов, жирных кислот и аминокислот. Большинство топливных молекул поступают в ЦТК в виде ацетил-КоА (рис. 1). Все реакции ЦТК протекают согласованно в одном направлении. Суммарная величина DG0¢ = -40 кДж/моль.

В среде врачей давно бытует крылатая фраза «Жиры горят в пламени углеводов». Ее надо понимать как окисление ацетил-КоА, основным источником которого является β-окисление жирных кислот, после конденсации с оксалоацетатом, образуемой, главным образом, из углеводов (при карбоксилировании пирувата). При нарушениях обмена углеводов или голодании создается дефицит оксалоацетата, ведущий к уменьшению окисления ацетил-КоА в ЦТК.

 

Рис.1. Роль ЦТК в клеточном дыхании. 1 стадия (ЦТК) извлечение из молекулы ацетил-КоА 8 электронов; 2 стадия (цепи переноса электронов) восстановление двух молекул кислорода и формирование протонного градиента (~36 Н+); 3 стадия (АТФ-синтаза) использование энергии протонного градиента для образования АТФ (~9 АТФ) (Berg J.M., Tymoczko J.L., Stryer L. Biochemistry. N-Y: W.H.Freeman and Company, 2002).

Основная метаболическая роль ЦТК может быть представлена в виде двух процессов: 1) серия окислительно-восстановительных реакций, в результате которых ацетильная группа окисляется до двух молекул СО2; 2) четырехкратное дегидрирование, ведущее к образованию 3 молекул НАДН+Н+ и 1 молекулы ФАДН2. Кислород необходим для функционирования ЦТК опосредованно как акцептор электронов в конце цепей переноса электронов и для регенерации НАД+ и ФАД.

Основное значение для регуляции ЦТК имеет синтез и гидролиз АТФ.

1. Изоцитратдегидрогеназа аллостерически активируется АДФ путем повышения сродства фермента к субстрату. НАДН ингибирует этот фермент, замещая НАД+. АТФ также ингибирует изоцитратдегидрогеназу. Важно, что превращения метаболитов в ЦТК требуют на нескольких стадиях НАД+ и ФАД, количество которых достаточно только в условиях низкого энергетического заряда.

2. Активность 2-оксоглутаратдегидрогеназного (α-кетоглутаратдегидрогеназного) комплекса регулируется аналогично регуляции пируватдегидрогеназного комплекса. Этот комплекс ингибируется сукцинил-КоА и НАДН (конечными продуктами превращений, катализируемых 2-оксоглутаратдегидрогеназным комплексом). Кроме того, 2-оксоглуттаратдегидрогеназный комплекс ингибируется высоким энергетическим зарядом клетки. Итак, скорость превращений в ЦТК уменьшается при достаточной обеспеченности клетки АТФ (рис. 11.2). У ряда бактерий цитратсинтаза аллостерически ингибируется АТФ посредством повышения Км для ацетил-КоА.

Схема регуляции общего пути катаболизма представлена на рисунке 2.

Рис. 2. Регуляция общего пути катаболизма. Основными молекулами, регулирующими функционирование ЦТК являются АТФ и НАДН. Основными пунктами регуляции являются изоцитратдегидрогеназа и 2-оксоглутаратдегидрогеназный комплекс.





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 10080 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

В моем словаре нет слова «невозможно». © Наполеон Бонапарт
==> читать все изречения...

2173 - | 2117 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.