Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Восьмеричная система счисления.




 

Основание восьмеричной системы счисления равно 8 (p=8) определяет число цифр входящих в данную систему счисления: {0,1,2,3,4,5,6,7} восемь цифр. Восьмеричная система счисления, так же как и десятичная является позиционной. Формула разложения по степени основания числа записанного в восьмеричной системе счисления имеет следующий вид:

где:

- значение числа в восьмеричной системе счисления;

q – количество разрядов числа записанного в восьмеричной системе счисления.

I – номер разряда;

- значение i-го разряда числа записанного в восьмеричной системе счисления.

 

Так для четырехразрядного числа, записанного в двоичной системе счисления формула разложения по степени основания будет иметь следующий вид:

 

Восьмеричная система счисления.

 

Основание шестнадцатеричной системы счисления равно 16 (p=16) определяет число цифр входящих в данную систему счисления: {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F} шестнадцать цифр. Поскольку в алфавит шестнадцатеричной системы счисления входит больше дести цифр, определенных для десятичной системы счисления, остальные цифры обозначаются буквами латинского алфавита. Шестнадцатеричная система счисления, так же как и десятичная является позиционной. Формула разложения по степени основания числа записанного в шестнадцатеричной системе счисления имеет следующий вид:

где:

- значение числа в шестнадцатеричной системе счисления;

q – количество разрядов числа записанного в шестнадцатеричной системе счисления.

I – номер разряда;

- значение i-го разряда числа записанного в шестнадцатеричной системе счисления.

 

Так для четырехразрядного числа, записанного в шестнадцатеричной системе счисления формула разложения по степени основания будет иметь следующий вид:

 

Взаимосвязь систем счисления используемых в вычислительной технике.

 

Двоичная система счисления, используемая элементами вычислительной техники имеет один недостаток – это громоздкость записи. Для того, чтобы записать число 255(10) требуется целых восемь разрядов 11111111(2). Для уменьшения разрядности при записи информации требовалось разработать системы счисления, в которые было бы легко переводить информацию из двоичной системы счисления, и при этом запись была бы менее громоздкой. Сначала была разработана восьмеричная система счисления, в которой тоже самое число 255(10) представлялось в виде 377(8), а затем шестнадцатеричная, это же число в которой имеет вид FF(16). Перевод между этими системами счисления можно осуществлять при помощи таблицы 2.

 

Таблица 2.

Двоичная Восьмеричная Шестнадцатеричная
     
     
     
     
     
     
     
     
     
     
    A
    B
    C
    D
    E
    F




Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 396 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Велико ли, мало ли дело, его надо делать. © Неизвестно
==> читать все изречения...

2456 - | 2138 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.