Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Моделирование процесса теплопроводности




 

То, что тела могут проводить тепло, общеизвестно. Если один из концов длинного стержня поместить в костер, то, если стержень сделан не из горючего или легко плавящегося материала, другой конец через некоторое время тоже нагреется; как быстро и насколько - зависит от материала, размеров стержня и других факторов. Процесс теплопроводности - один из, так называемых, процессов тепломассопереноса, играющих огромную роль в природе и в технике. Другие процессы такого рода - диффузия, благодаря которой смешиваются разные жидкости или газы, процессы гидро- и аэродинамики (т.е. переноса (движения) жидкостей и газов).

Хотя каждый изтаких процессов имеет собственные закономерности, междуними много общего.Эти процессы происходят в сплошной среде, о которой шла речь выше; при их математическом моделировании используется один и тотжематематический аппарат-дифференциальные уравнения в частных производных.

Ограничимся одной из самых простых задач данного класса - переносом тепла в однородном стержне. Рассмотрим линейный стержень, боковая поверхность которого не проводит тепла (теплонзолирована). Если в начальный момент стержень неравномерно нагрет, то в нем будет происходить перераспределение тепла; при отсутствии внутренних источников тепла его температура, в конце концов, выровняется.

Поскольку стержень линеен и однороден, то распределение температуры в пространстве характеризуется одной координатой x.

Температура (обозначим ее u) зависит от х; кроме того, она может менятьсясовременем, т.е. является функций двух переменных и(х, t). Изменение этой функции вдоль стержня, «скорость» которого определяется производной пол x, и изменение ее со временем, скорость которого определяется производной по t, взаимосвязаныи,как будет показано ниже, входят в одно уравнение.

Уравнение теплопроводности. Получим уравнение, описывающее процесс изменения температуры в стержне. Фиксируем некоторую точку x0 (рис. 7.29) и выделим около нее малый участок стержня длиной Δx. Искомое уравнение есть по существу уравнение теплового баланса (т.е. сохранения энергии): изменение количества тепла в избранном участке стержня за счет притока и (или) оттока его через два сечения приведет к нагреванию или охлаждению этого участка в соответствии с его теплоемкостью. Выразим все это математическим языком.

Рис. 7.29. Участок линейного стержня

 

Количество тепла, проходящее через поперечное сечение стержня в точке x0 за время Δt, пропорционально площади поперечного сечения S, градиенту температуры и промежутку времени Δt: ~ , рис. 7.30. Если с S и Δt все очевидно, то появление производной требует пояснении. За ней стоит тот экспериментальный факт, что поток тепла ΔQ, через некоторый участок стержня длиной Δх тем больше, чем больше разность температур (|и1 | - | u2 |) на его концах и чем меньше расстояние Δх:

Вводя коэффициент пропорциональности k, называемый коэффициентом теплопроводности, получаем

Значение k определяется материалом стержня и для нескольких материалов приведено в табл. 7.6 (в единицах системы СИ: ).

Таким образом, различия в теплопроводности разных материалов огромны.

Рис. 7.30. Поток тепла через участок стержня длиной Δх

 

Теперь запишем количество тепла, проходящее через сечение в точке х = x 0 + Δx:. Оно определяется, естественно, той же формулой:

с условием, что производная берется в точке х = x 0 + Δх. Для получения искомого уравнения ее надо выразить через значение в точке x0.

 

Таблица 7.6





Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 364 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинайте делать все, что вы можете сделать – и даже то, о чем можете хотя бы мечтать. В смелости гений, сила и магия. © Иоганн Вольфганг Гете
==> читать все изречения...

2286 - | 2070 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.