Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Определение ускорения точки

Естественный способ задания движения точки

Рассмотрим, как вычисляются скорость и ускорение точки при естественном способе задания ее движения, то есть когда заданы траектория точки и закон движения точки вдоль этой траектории в виде s = s(t).

В этом случае векторы v и a определяют по их проекциям не на оси системы координат Oxyz, а на подвижные оси P nb, имеющие начало в точке Р и движущиеся вместе с нею (см.рис.). Эти оси, называемые осями естественного трехгранника, направлены следующим образом:

  • ось P направлена по касательной к траектории в сторону положительного направления отсчета координаты s;
  • ось Pn направлена по нормали к траектории, лежащей в соприкасающейся плоскости и направленной в сторону вогнутости траектории;
  • ось Pb направлена перпендикулярно к первым двум осям P и Pn так, чтобы она образовала правую систему осей (с положительного направления оси Pb поворот оси P к оси Pn в их плоскости на прямой угол виден происходящим против хода часовой стрелки).

Нормаль Pn, лежащая в соприкасающейся плоскости (в плоскости самой кривой, если кривая плоская),называется главной нормалью, а перпендикулярная ей нормаль Pb - бинормалью.

Определение скорости точки

Вектор скорости v точки направлен по касательной к траектории и определяется одной проекцией , равной первой производной от криволинейной координаты s этой точки по времени:

= ds / dt = .

Величину , которая может быть как положительной, так и отрицательной, называют числовым ( или алгебраическим) значением скорости.

Модуль скорости v = | | и, следовательно, значения v и могут отличаться лишь знаком:


v = , если точка движется в положительном направлении отсчета координаты s, или
v = - , если точка движется в противоположном направлении.

Таким образом, величина определяет одновременно и модуль скорости, и сторону, в которую направлен вектор v вдоль касательной.

Определение ускорения точки

Вектор ускорения a точки лежит в соприкасающейся плоскости P n и определяется двумя проекциями и an (ab = 0):

  • проекция ускорения точки на касательную равна первой производной от алгебраической скорости или второй производной от криволинейной координаты точки по времени:

= d / dt = d2s /dt2 или = = .

  • проекция ускорения на главную нормаль равна квадрату скорости, деленному на радиус кривизны траектории в данной точке кривой:

an = v2 / .

Величины и an соответственно называют касательным и нормальным ускорениями точки.

Вектор ускорения a является векторной суммой касательной составляющей , напраленной вдоль касательной P , и нормальной составляющей a n, направленной вдоль главной нормали Pn:

a = + a n.

При этом составляющая может быть направлена или в положительном, или в отрицательном направлении оси P в зависимости от знака проекции , а составляющая a n будет всегда направлена в сторону вогнутости кривой, так как проекция an 0.

Так как эти составляющие взаимно перпендикулярны, то модуль вектора a определяется по формуле:

a = ( 2 + an2) .

Рассмотрим теперь геометрическую характеристику траектории точки, называемую радиусом кривизны .

Радиус кривизны кривой в какой-либо ее точке равен радиусу окружности, которая наилучшим образом аппроксимирует по сравнению с другими окружностями участок кривой из малой окрестности рассматриваемой точки. Величина, обратная радиусу кривизны, называется кривизной кривой k = 1 / в данной точке.

В частности, для окружности радиус кривизны одинаков во всех ее точках и равен ее радиусу: = R (кривизна окружности k = 1 / R); для прямой радиус кривизны = (кривизна прямой k = 0).

Рассмотрим условия, при которых касательное и нормальное ускорения обращаются в нуль.

  • Касательное ускорение равно нулю, если = d / dt = 0.
    Это условие выполняется, если все время v = | | = const, то есть при равномерном движении точки по траектории любой формы.
    Касательное ускорение обращается в нуль также в те моменты времени, в которые алгебраическая скорость достигает экстремума, например максимума или минимума.
  • Нормальное ускорение равно нулю, если an = v2 / = 0.
    Это условие выполняется, если = , то есть при прямолинейном движении точки. При движении точки по криволинейной траектории = в точках перегиба, в которых происходит изменение выпуклости траектории на вогнутость, и наоборот.
    Нормальное ускорение обращается в нуль также в моменты времени, в которые v = 0, то есть в моменты изменения направления движения точки по траектории.
    (Пример)

Общие формулы для вычисления касательного и нормального ускорений, а также условия обращения их в нуль, показывают, что

  • касательное ускорение характеризует изменение вектора скорости по величине;
  • нормальное ускорение характеризует изменение вектора скорости по направлению.

 



<== предыдущая лекция | следующая лекция ==>
Траурно-триумфальная симфония | 
Поделиться с друзьями:


Дата добавления: 2016-11-12; Мы поможем в написании ваших работ!; просмотров: 1145 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Самообман может довести до саморазрушения. © Неизвестно
==> читать все изречения...

2513 - | 2360 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.