.


:




:

































 

 

 

 


To look for a new job (work, position)




to apply for a new job -

application for a position of -

resume

C.V. (curriculum vitae)

to be fired

to retire

to be unemployed


THE FUTURE OF THE ENGINEERING PROFESSION

Among various recent trends in the engineering profession computerization is the most widespread. The trend in modern engineering offices is also towards computerization. Computers are increasingly used for solving complex problems as well as for handling, storing, and generating the enormous volume of data modern engineers must work with.

Scientific methods of engineering are applied in several fields not connected directly to manufacture and construction. Modern engineering is characterized by the broad application of what is known as systems engineering principles.

Engineers in industry work not only with machines but also with people, to determine, for example, how machines can be operated most efficiently by workers. A small change in the location of the controls of a machine or of its position with relation to other machines or equipment, or a change in the muscular movements of the operator, often results in greatly increased production. This type of engineering work is called time-study engineering.

A related field of engineering, human-factors engineering, also known as ergonomics, received wide attention in the late 1970s and 1980s when the safety of nuclear reactors was questioned following serious accidents that were caused by operator errors, design failures, and malfunctioning equipment.

Human-factors engineering seeks to establish criteria for the efficient, human-centred design of, among other things, the large, complicated control panels that monitor and govern nuclear reactor operations.

General understanding:

1. What is the most widespread trend in the engineering profession?

2. What are computers used for in modern engineering?

3. What approaches are used in modern engineering?

4. What is ergonomics?

5. What does human-factors engineering deal with?

 

METALS

Metals are materials most widely used in industry because of their properties. The study of the production and properties of metals is known as metallurgy.

The separation between the atoms in metals is small, so most metals are dense. The atoms are arranged regularly and can slide over each other. That is why metals are malleable (can be deformed and bent without fracture) and ductile (can be drawn into wire). Metals vary greatly in their properties. For example, lead is soft and can be bent by hand, while iron can only be worked by hammering at red heat.

The regular arrangement of atoms in metals gives them a crystalline structure. Irregular crystals are called grains. The properties of the metals depend on the size, shape, orientation, and composition of these grains. In general, a metal with small grains will be harder and stronger than one with coarse grains.

Heat treatment such as quenching, tempering, or annealing controls the nature of the grains and their size in the metal. Small amounts of other metals (less than 1 per cent) are often added to a pure metal. This is called alloying () and it changes the grain structure and properties of metals.

All metals can be formed by drawing, rolling, hammering and extrusion, but some require hot-working. Metals are subject to metal fatigue and to creep (the slow increase in length under stress) causing deformation and failure. Both effects are taken into account by engineers when designing, for example, airplanes, gas-turbines, and pressure vessels for high-temperature chemical processes. Metals can be worked using machine-tools such as lathe, milling machine, shaper and grinder.

The ways of working a metal depend on its properties. Many metals can be melted and cast in moulds, but special conditions are required for metals that react with air.

Vocabulary:


property

metallurgy

separation ,

dense

arrangement

regularly ,

to slide

malleable , ,

bent pp of bend

to fracture

ductile ,

to draw ,

wire

lead

iron ,

grain

to depend

size ,

shape ,

composition

coarse ,

treatment

quenching

tempering ,

annealing ,

rolling

to hammer (. )

extrusion

metal fatigue

creep

stress ,

failure ,

vessel , ,

lathe

milling machine

shaper

grinder

to melt ,

to cast ,

mould ( )


General understanding:


1. What are metals and what do we call metallurgy?

2. Why are most metals dense?

3. Why are metals malleable?

4. What is malleability?

5. What are grains?

6. What is alloying?

7. What is crystalline structure?

8. What do the properties of metals depend on?

9. What changes the size of grains in metals?

10. What are the main processes of metal forming?

11. How are metals worked?

12. What is creeping?


Find the following words and word combinations in the text:


1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.


STEEL

The most important metal in industry is iron and its alloy steel. Steel is an alloy of iron and carbon. It is strong and stiff, but corrodes easily through rusting, although stainless and other special steels resist corrosion. The amount of carbon in a steel influences its properties considerably. Steels of low carbon content (mild steels) are quite ductile and are used in the manufacture of sheet iron, wire, and pipes. Medium-carbon steels containing from 0.2 to 0.4 per cent carbon are tougher and stronger and are used as structural steels. Both mild and medium-carbon steels are suitable for forging and welding. High-carbon steels contain from 0.4 to 1.5 per cent carbon, are hard and brittle and are used in cutting tools, surgical instruments, razor blades and springs. Tool steel, also called silver steel, contains about 1 per cent carbon and is strengthened and toughened by quenching and tempering.

The inclusion of other elements affects the properties of the steel. Manganese gives extra strength and toughness. Steel containing 4 per cent silicon is used for transformer cores or electromagnets because it has large grains acting like small magnets. The addition of chromium gives extra strength and corrosion resistance, so we can get rust-proof steels. Heating in the presence of carbon or nitrogen-rich materials is used to form a hard surface on steel (case-hardening). High-speed steels, which are extremely important in machine-tools, contain chromium and tungsten plus smaller amounts of vanadium, molybdenum and other metals.

Vocabulary:


alloy

carbon

stiff

to corrode ,

rusty

stainless

to resist

considerably ,

tough , , ,

forging

welding

brittle ,

cutting tools

surgical instruments

blade

spring

inclusion

to affect

manganese

silicon

rust-proof

nitrogen

tungsten


General understanding:

1. What is steel?

2. What are the main properties of steel?

3. What are the drawbacks of steel?

4. What kinds of steel do you know? Where are they used?

5. What gives the addition of manganese, silicon and chromium to steel?

6. What can be made of mild steels (medium-carbon steels, high-carbon steels)?

7. What kind of steels can be forged and welded?

8. How can we get rust-proof (stainless) steel?

9. What is used to form a hard surface on steel?

10. What are high-speed steels alloyed with?

 

Find the following words and word combinations in the text:


1.

2.

3.

4.

5.

6.

7. , ,

8.

9.

10.

11.

12.

13.

14.


METHODS OF STEEL HEAT TREATMENT

Quenching is a heat treatment when metal at a high temperature is rapidly cooled by immersion in water or oil. Quenching makes steel harder and more brittle, with small grains structure.

Tempering is a heat treatment applied to steel and certain alloys. Hardened steel after quenching from a high temperature is too hard and brittle for many applications and is also brittle. Tempering, that is re-heating to an intermediate temperature and cooling slowly, reduces this hardness and brittleness. Tempering temperatures depend on the composition of the steel but are frequently between 100 and 650 C. Higher temperatures usually give a softer, tougher product. The color of the oxide film produced on the surface of the heated metal often serves as the indicator of its temperature.

Annealing isa heat treatment in which a material at high temperature is cooled slowly. After cooling the metal again becomes malleable and ductile (capable of being bent many times withoutcracking).

All these methods of steel heat treatment are used to obtain steels with certain mechanical properties for certain needs.

Vocabulary:

to immerse

to apply

intermediate

oxide film

annealing ,

cracking

General understanding:

1. What can be done to obtain harder steel?

2. What makes steel more soft and tough?

3. What makes steel more malleable and ductile?

4. What can serve as the indicator of metal temperature while heating it?

5. What temperature range is used for tempering?

6. What are the methods of steel heat treatment used for?

Translate into English the following words and word combinations:

 

1.

2.

3.

4.

5.

6.

7.

8.

MECHANICAL PROPERTIES Of MATERIALS

Materials Science and Technology is the study of materials and how they can be fabricated to meet the needs of modern technology. Using the laboratory techniques and knowledge of physics, chemistry, and metallurgy, scientists are finding new ways of using metals, plastics and other materials.

Engineers must know how materials respond to external forces, such as tension, compression, torsion, bending, and shear. All materials respond to these forces by elastic deformation. That is, the materials return their original size and form when the external force disappears. The materials may also have permanent deformation or they may fracture. The results of external forces are creep and fatigue.

Compression is a pressure causing a decrease in volume. When a material is subjected to a bending, shearing, or torsion (twisting) force, both tensile and compressive forces are simultaneously at work. When a metal bar is bent, one side of it is stretched and subjected to a tensional force, and the other side is compressed.

Tension is a pulling force; for example, the force in a cable holding a weight. Under tension, a material usuallystretches, returning to its original length if the force does notexceed the material'selastic limit. Under larger tensions, the material does not returncompletely to its original condition, and under greater forces the materialruptures.

Fatigue is the growth of cracks under stress. It occurs when a mechanical part is subjected to a repeated or cyclic stress, such as vibration. Even when the maximum stress never exceeds the elastic limit, failure of the material can occur even after a short time. No deformation is seen during fatigue, but small localized cracks develop and propagate through the material until the remaining cross-sectional area cannot support the maximum stress of the cyclic force. Knowledge of tensile stress, elastic limits, and the resistance of materials to creep and fatigue are of basic importance in engineering.

Creep is a slow, permanent deformation that results from a steady force acting on a material. Materials at high temperatures usually suffer from this deformation. The gradual loosening of bolts and the deformation of components of machines and engines are all the examples of creep. In many cases the slow deformation stops because deformation eliminates the force causing the creep. Creep extended over a long time finally leads to the rupture of the material.

Vocabulary


bar ,

completely ,

compression

creep

cross-sectional area

cyclic stress

decrease

elastic deformation

elastic limit

exceed

external forces

fatigue

fracture ,

loosen ,

permanent deformation

remaining

shear

simultaneously

to stretch

technique

tension

to propagate

to bend ,

to extend ,

to meet the needs

to occur

to respond

to suffer

torsion

twisting ,

volume ,

rupture


General understanding:

1. What are the external forces causing the elastic deformation of materials? Describe those forces that change the form and size of materials.

2. What are the results of external forces?

3. What kinds of deformation are the combinations of tension and compression?

4. What is the result of tension? What happens if the elastic limit of material is exceeded under tension?

5. What do we call fatigue? When does it occur? What are the results of fatigue?

6. What do we call creep? When does this type of permanent deformation take place? What are the results of creep?

 

Find the following in the text:

1.

2.

3.

4. , , , ,

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

 

MACHINE-TOOIS

Machine-tools are used to shape metals and other materials. The material to be shaped is called the workpiece. Most machine-tools are now electrically driven. Machine-tools with electrical drive are faster and more accurate than hand tools: they were an important element in the development of mass-production processes, as they allowed individual parts to be made in large numbers so as to be interchangeable.

All machine-tools have facilities for holding both the workpiece and the tool, and for accurately controlling the movement of the cutting tool relative to the workpiece. Most machining operations generate large amounts of heat, and use cooling fluids (usually a mixture of water and oils) for cooling and lubrication.

Machine-tools usually work materials mechanically but other machining methods have been developed lately. They include chemical machining, spark erosion to machine very hard materials to any shape by means of a continuous high-voltage spark (discharge) between an electrode and a workpiece. Other machining methods include drilling using ultrasound, and cutting by means of a laser beam. Numerical control of machine-tools and flexible manufacturing systems have made it possible for complete systems of machine-tools to be used flexibly for the manufacture of a range of products.

Vocabulary:


machine-tools

electrically driven

shape

workpiece

accurate

development

to allow ,

interchangeable

facility

relative

amount

fluid

to lubricate

spark erosion

discharge

by means of

beam

drilling

flexible

range ,


LATHE

Lathe is still the most important machine-tool. It produces parts of circular cross-section by turning the workpiece on its axis and cutting its surface with a sharp stationary tool. The tool may be moved sideways to produce a cylindrical part and moved towards the workpiece to control the depth of cut. Nowadays all lathes are power-driven by electric motors. That allows continuous rotation of the workpiece at a variety of speeds. The modern lathe is driven by means of a headstock supporting a hollow spindle on accurate bearings and carrying either a chuck or a faceplate, to which the workpiece is clamped. The movement of the tool, both along the lathe bed and at right angle to it, can be accurately controlled, so enabling a part to be machined to close tolerances. Modern lathes are often under numerical control.

Vocabulary:


lathe

circular cross-section

surface

stationary ,

sideways

variety ,

depth

headstock

spindle

chuck ,

faceplate

lathe bed

to enable

tolerance


General understanding:

1. What are machine-tools used for?

2. How are most machine-tools driven nowadays?

3. What facilities have all machine-tools?

4. How are the cutting tool and the workpiece cooled during machining?

5. What other machining methods have been developed lately?

6. What systems are used now for the manufacture of a range of products without the use of manual labor?

7. What parts can be made with lathes?

8. How can the cutting tool be moved on a lathe?

9. How is the workpiece clamped in a lathe?

10. Can we change the speeds of workpiece rotation in a lathe?

11. What is numerical control of machine tools used for?

 

Find English equivalents in the text:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14. ,

15.

16.

17.


Translate into English:

1. .

2. .

3. , .

4. .

MILLING MACHINE

In a milling machine the cutter () is a circular device with a series of cutting edges on its circumference. The workpiece is held on a table that controls the feed against the cutter. The table has three possible movements: longitudinal, horizontal, and vertical; in some cases it can also rotate. Milling machines are the most versatile of all machine tools. Flat or contoured surfaces may be machined with excellent finish and accuracy. Angles, slots, gear teeth and cuts can be made by using various shapes of cutters.





:


: 2016-11-03; !; : 616 |


:

:

,
==> ...

1734 - | 1672 -


© 2015-2024 lektsii.org - -

: 0.182 .