КЛАССИФИКАЦИЯ СИСТЕМ
Системы принято подразделять на физические и абстрактные, динамические и статические, простые и сложные, естественные и искусственные, с управлением и без управления, непрерывные и дискретные, детерминированные и стохастические, открытые и замкнутые.
Деление систем на физические и абстрактные позволяет различать реальные системы (объекты, явления, процессы) и системы, являющиеся определенными отображениями (моделями) реальных объектов.
Для реальной системы может быть построено множество систем - моделей, различаемых по цели моделирования, по требуемой степени детализации и по другим признакам.
Деление систем на простые и сложные (большие) подчеркивает, что в системном анализе рассматриваются не любые, а именно сложные системы большого масштаба. При этом выделяют структурную и функциональную (вычислительную) сложность.
Общепризнанной границы, разделяющей простые, большие и сложные системы, нет. Однако условно будем считать, что сложные системы характеризуются тремя основными признаками: свойством робастности, наличием неоднородных связей и эмерджентностью.
Во-первых, сложные системы обладают свойством робастности - способностью сохранять частичную работоспособность (эффективность) при отказе отдельных элементов или подсистем. Оно объясняется функциональной избыточностью сложной системы и проявляется в изменении степени деградации выполняемых функций, зависящей от глубины возмущающих воздействий. Простая система может находиться не более чем в двух состояниях: полной работоспособности (исправном) и полного отказа (неисправном).
Во-вторых, в составе сложных систем кроме значительного количества элементов присутствуют многочисленные и разные по типу (неоднородные) связи между элементами. Основными типами считаются следующие виды связей: структурные (в том числе иерархические), функциональные, каузальные (причинно-следственные, отношения истинности), информационные, пространственно-временные. По этому признаку будем отличать сложные системы от больших систем, представляющих совокупность однородных элементов, объединенных связью одного типа. В-третьих, сложные системы обладают свойством, которое отсутствует у любой из составляющих ее частей. Это интегративность (целостность), или эмерджентность. Другими словами, отдельное рассмотрение каждого элемента не дает полного представления о сложной системе в целом. Эмерджентность может достигаться за счет обратных связей, играющих важнейшую роль в управлении сложной системой.
Считается, что структурная сложность системы должна быть пропорциональна объему информации, необходимой для ее описания (снятия неопределенности). В этом случае общее количество информации о системе S, в которой априорная вероятность появления j-гo свойства равна р(уj), определяется известным соотношением для количества информации
I(Y) = - ∑p(yj) log2p(yj). (1.6)
Это энтропийный подход к дескриптивной (описательной) сложности.
Одним из способов описания такой сложности является оценка числа элементов, входящих в систему (переменных, состояний, компонентов), и разнообразия взаимозависимостей между ними.
В общей теории систем утверждается, что не существует систем обработки данных, которые могли бы обработать более чем 2 . 1047 бит в секунду на грамм своей массы. При этом компьютерная система, имеющая массу, равную массе Земли, за период, равный примерно возрасту Земли, может обработать порядка 1093 бит информации (предел Бреммермана). Задачи, требующие обработки более чем 1093 бит, называются трансвычислительньши. В практическом плане это означает, что, например, полный анализ системы из ПО переменных, каждая из которых может принимать 7 разных значений, является трансвычислительной задачей.
Сложные системы допустимо делить на искусственные и естественные (природные).
Искусственные системы, как правило, отличаются от природных наличием определенных целей функционирования (назначением) и наличием управления.
Рассмотрим еще один важный признак классификации систем. Принято считать, что система с управлением,- имеющая нетривиальный входной сигнал x(t) и выходной сигнал y(t), может рассматриваться как преобразователь информации, перерабатывающий поток информации (исходные данные) x(t) в поток информации (решение по управлению) y(t).
В соответствии с типом значений x(t), y(t), z(t) и системы делятся на дискретные и непрерывные.
Такое деление проводится в целях выбора математического аппарата моделирования. Так, теория обыкновенных дифференциальных уравнений и уравнений в частных производных позволяет исследовать динамические системы с непрерывной переменной (ДСНП). С другой стороны, современная техника создает антропогенные динамические системы с дискретными событиями (ДСДС), не поддающиеся такому описанию. Изменения состояния этих систем происходят не непрерывно, а в дискретные моменты времени, по принципу «от события к событию». Математические (аналитические) модели заменяются на имитационные, дискретно-событийные: модели массового обслуживания, сети Петри, цепи Маркова и др.
Примеры фазовых траекторий ДСДС и ДСНП показаны на рис. 1.3, а, б.
Для ДСДС траектория является кусочно-постоянной и формируется последовательностью событий и. Последовательность отрезков постоянства отражает последовательность состояний z системы, а длительность каждого отрезка отражает время пребывания системы в соответствующем состоянии. Под состоянием при этом понимается «физическое» состояние (например, число сообщений, ожидающих передачи в каждом узле обработки). Состояния принимают значения из дискретного множества.
Рис- 1.З. Типичные примеры фазовых траекторий ДСДС(й)иДСНП(б)
Для перехода от детерминированной к стохастической системе достаточно в правые части соотношений (см. ниже) добавить в качестве аргументов функционалов случайную функцию р(t), принимающую значения на непрерывном или дискретно множестве действительных чисел.
Эти соотношения называют уравнениями наблюдения и уравнением состояния системы. Еслив описание системы введены функционалы f и g, то она уже не рассматривается как «черный ящик». Однако для многих систем определение глобальных уравнений оказывается делом трудным и зачастую невозможным (уч. пособие СА в управлении, В.С.Анфилатов стр. 23).
Следует иметь ввиду, что в отличии от математики для СА, как и для кибернетики, характерен конструктивный подход к изучаемым объектам. Это требует корректности задания системы, под которой понимается возможность фактического вычисления входного сигнала y(t) для всех t больше 0 при задании начального состояния системы z(0) и входного сигнала x(t) для всех ti.
Системы с нетривиальным входным сигналом x(t), источником которого нельзя управлять (непосредственно наблюдать), или системы, в которых неоднозначность их реакции нельзя объяснить разницей в состоянии, называется открытыми. Признаком, по которому можно определить открытую систему, служит наличие взаимодействия с внешней средой. Взаимодействие порождает проблему «предсказуемости» значений выходных сигналов и, как следствие, - трудности описания открытых систем.
Примером трудностей описания является понятие «странный аттрактор» - специфическое свойство некоторых сложных систем. Простейший аттрактор, называемый математиками неподвижной точкой, представляет собой такой вид равновесия, который характерен для состояния устойчивых систем после кратковременного возмущения (состояние покоя емкости с водой после встряхивания). Второй вид аттрактора - предельный цикл маятника. Все разновидности предельного цикла предсказуемы. Третья разновидность называется странным аттрактором. Обнаружено много систем, имеющих встроенные в них источники нарушений, которые не могут быть заранее предсказаны (погода, место остановки шарика в рулетке). В экспериментах наблюдали за краном, из которого нерегулярно капали капли, хотя промежутки должны быть регулярными и предсказуемыми, так как вентиль зафиксирован и поток воды постоянен.
Понятие открытости систем конкретизируется в каждой предметной области. Например, в области информатики открытыми информационными системами называются программно-аппаратные комплексы, которым присущи следующие свойства:
• переносимость (мобильность) - программное обеспечение (ПО) может быть легко перенесено на различные аппаратные платформы и в различные операционные среды;
• стандартность - программное обеспечение соответствует опубликованному стандарту независимо от конкретного разработчика ПО;
• наращиваемость возможностей - включение новых программных и технических средств, не предусмотренных в первоначальном варианте;
• совместимость - возможность взаимодействовать с другими комплексами на основе развитых интерфейсов для обмена данными с прикладными задачами в других системах.
В отличие от открытых замкнутые (закрытые) системы изолированы от среды - не оставляют свободных входных компонентов ни у одного из своих элементов. Все реакции замкнутой системы однозначно объясняются изменением ее состояний. Вектор входного сигнала x(t) в замкнутых системах имеет нулевое число компонентов и не может нести никакой информации. Замкнутые системы в строгом смысле слова не должны иметь не только входа, но и выхода. Однако даже в этом случае их можно интерпретировать как генераторы информации, рассматривая изменение их внутреннего состояния во времени. Примером физической замкнутой системы является локальная сеть для обработки конфиденциальной информации.
Основным противоречием, которое приходится разрешать в замкнутых системах, является проблема возрастания энтропии. Согласно второму закону термодинамики по мере движения замкнутой системы к состоянию равновесия она стремится к максимальной энтропии (дезорганизации), соответствующей минимальной информации. Открытые системы могут изменить это стремление к максимальной энтропии, получая внешнюю по отношению к системе свободную энергию, и этим поддерживают организацию.
ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ
СИСТЕМНОГО АНАЛИЗА
Для оперирования основными понятиями системного анализа будем придерживаться следующих словесно-интуитивных или формальных определений.
Элемент - некоторый объект (материальный, энергетический, информационный), обладающий рядом важных свойств и реализующий в системе определенный закон функционирования FS, внутренняя структура которого не рассматривается.
Формальное описание элемента системы совпадает с описанием подмодели Ψа. Однако функционалы g и f заменяются на закон функционирования и в зависимости от целей моделирования входной сигнал x(t) может быть разделен на три подмножества:
• неуправляемых входных сигналов , преобразуемых рассматриваемым элементом;
• воздействий внешней среды представляющих шум, помехи;
• управляющих сигналов (событий) появление которых приводит к переводу элемента из одного состояния в другое.
Иными словами, элемент - это неделимая наименьшая функциональная часть исследуемой системы, включающая < х, п, и, у, Fs> и представляемая как «черный ящик» (рис. 1.5). Функциональную модель элемента будем представлять как
Входные сигналы, воздействия внешней среды и управляющие сигналы являются независимыми переменными. При строгом подходе изменение любой из независимых переменных влечет за собой изменение состояния элемента системы. Поэтому в дальнейшем будем обобщенно обозначать эти сигналы как x(i), a функциональную модель элемента - как если это
не затрудняет анализ системы.
Выходной сигнал y(t), в свою очередь, представляют совокупностью характеристик элемента
Под средой понимается множество объектов S/ вне данного элемента (системы), которые оказывают влияние на элемент (систему) и сами находятся под воздействием элемента (системы),
Правильное разграничение исследуемого реального объекта и среды является необходимым этапом системного анализа. Часто в системном анализе выделяют понятие «суперсистема» - часть внешней среды, для которой исследуемая система является элементом.
Подсистема - часть системы, выделенная по определенному признаку, обладающая некоторой самостоятельностью и допускающая разложение на элементы в рамках данного рассмотрения.
Система может быть разделена на элементы не сразу, а последовательным расчленением на подсистемы - совокупности элементов. Такое расчленение, как правило, производится на основе определения независимой функции, выполняемой данной совокупностью элементов совместно для достижения некой частной цели, обеспечивающей достижение общей цели системы. Подсистема отличается от простой группы элементов, для которой не выполняется условие целостности.
Последовательное разбиение системы в глубину приводит к иерархии подсистем, нижним уровнем которых является элемент. Типичным примером такого разбиения является структура Паскаль-программы. Так, например, тело основной программы включает модули - подсистемы первого уровня, модули включают функции и процедуры - подсистемы второго уровня, функции и процедуры включают операнды и операторы - элементы системы.
Характеристика -то, что отражает некоторое свойство элемента системы.
Характеристика уj, задается кортежем уj = < name, {value} >, где пате – имя уj-й характеристики, {value} - область допустимых значений. Область допустимых значений задается перечислением этих значений или функционально, с помощью правил вычисления (измерения)и оценки.
Характеристики делятся на количественные и качественные в зависимости от типа отношений на множестве их значений.
Если на множестве значений заданы метризованные отношения, когда указывается не только факт выполнения отношения но также и степень количественного превосходства, то
характеристика является количественной. Например, размер экрана (см), максимальное разрешение (пиксель) являются количественными характеристиками мониторов, поскольку существуют шкалы измерений этих характеристик в сантиметрах и пикселях соответственно, допускающие упорядочение возможных значений по степени количественного превосходства: размер экрана монитора уj 1 больше, чем размер экрана монитора уj2, на 3 см (аддитивное метризованное отношение) или максимальное разрешение у} выше, чем максимальное разрешение уj 1 два раза (мультипликативное метризованное отношение).
Если пространство значений не метрическое, то характеристика называется качественной. Например, такая характеристика монитора, как комфортное разрешение, хотя и измеряется в пикселях, является качественной. Поскольку на комфортность влияют мерцание, нерезкость, индивидуальные особенности пользователя и т.д., единственным отношением на шкале комфортности является отношение эквивалентности, позволяющее различить мониторы как комфортные и некомфортные без установления количественных предпочтений.
Количественная характеристика называется параметром.
Часто в литературе понятия «параметр» и «характеристика» отождествляются на том основании, что все можно измерить. Но в общем случае полезно разделять параметры и качественные характеристики, так как не всегда возможно или целесообразно разрабатывать процедуру количественной оценки какого-либо свойства.
Характеристики элемента являются зависимыми переменными и отражают свойства элемента. Под свойством понимают сторону объекта, обусловливающую его отличие от других объектов или сходство с ними и проявляющуюся при взаимодействии с другими объектами.
Свойства задаются с использованием отношений - одного из основных математических понятий, используемых при анализе и обработке информации. На языке отношений единым образом можно описать воздействия, свойства объектов и связи между ними, задаваемые различными признаками. Существует несколько форм представления отношений: функциональная (в виде функции, функционала, оператора), матричная, табличная, логическая, графовая, представление сечениями, алгоритмическая (в виде словесного правила соответствия).
Свойства классифицируют на внешние, проявляющиеся в форме выходных характеристик уi только при взаимодействии с внешними объектами, и внутренние, проявляющиеся в форме переменных состояния zi при взаимодействии с внутренними элементами рассматриваемой системы и являющиеся причиной внешних свойств.
Одна из основных целей системного анализа - выявление внутренних свойств системы, определяющих ее поведение.
По структуре свойства делят на простые и сложные (интегральные). Внешние простыесвойства доступны непосредственному наблюдению, внутренние свойства конструируются в нашем сознании логически и не доступны наблюдению.
Следует помнить о том, что свойства проявляются только при взаимодействии с другими объектами или элементами одного объекта между собой.
По степени подробности отражения свойств выделяют горизонтальные (иерархические) уровни анализа системы. По характеру отражаемых свойств выделяют вертикальные уровни анализа - аспекты. Этот механизм лежит в основе утверждения о том, что для одной реальной системы можно построить множество абстрактных систем.
При проведении системного анализа на результаты влияет фактор времени. Для своевременного окончания работы необходимо правильно определить уровни и аспекты проводимого исследования. При этом производится выделение существенных для данного исследования свойств путем абстрагирования от несущественных по отношению к цели анализа подробностей.
Формально свойства могут быть представлены также и в виде закона функционирования элемента.
Законом функционирования Fs, описывающим процесс функционирования элемента системы во времени, называется зависимость y(t) = Fs(x, n, и, t).
Оператор Fs преобразует независимые переменные в зависимые и отражает поведение элемента (системы) во времени - процесс изменения состояния элемента (системы), оцениваемый по степени достижения цели его функционирования. Понятие поведения принято относить только к целенаправленным системам и оценивать по показателям.
Цель - ситуация или область ситуаций, которая должна быть достигнута при функционировании системы за определенный промежуток времени. Цель может задаваться требованиями к показателям результативности, ресурсоемкости, оперативности функционирования системы либо к траектории достижения заданного результата. Как правило, цель для системы определяется старшей системой, а именно той, в которой рассматриваемая система является элементом-
Показатель - характеристика, отражающая качество j-й системы или целевую направленность процесса (операции), реализуемого у-й системой:
Показатели делятся на частные показатели качества (или эффективности) системы уji которые отражают i -e существенное свойство j -й системы, и обобщенный показатель качества (или эффективности) системы Yj - вектор, содержащий совокупность свойств системы в целом. Различие между показателями качества и эффективности состоит в том, что показатель эффективности характеризует процесс (алгоритм) и эффект от функционирования системы, а показатели качества - пригодность системы для использования ее по назначению.
Вид отношений между элементами, который проявляется как некоторый обмен (взаимодействие), называется связью. Как правило, в исследованиях выделяются внутренние и внешние связи. Внешние связи системы - это ее связи со средой. Они проявляются в виде характерных свойств системы. Определение внешних связей позволяет отделить систему от окружающего мира и является необходимым начальным этапом исследования.