Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Лекция 9. Функция Грина. Примеры

В этой лекции мы будем рассматривать уравнение Лапласа в ограниченных областях D, расположенных на плоскости или в пространстве. Точки Р(х, у) и Рoo, уo) на плоскости (или Р(х, у, z) и Рoo, уo, zo) в пространстве) принадлежат области D и
(или
) - расстояние между точками Рo и Р.
Предположим, что на границе области D задано нулевое условие Дирихле.

Функция G(P,Po) называется функцией Грина задачи Дирихле в области D, если для любой фиксированной точки она, как функция от Р, удовлетворяет следующим условиям:

(i) непрерывная в всюду, кроме точки Po, и G(P,Po) = 0 на границе D;
(ii) гармоническая в D за исключением точки Po;
(iii) в случае плоскости остается гармонической функцией в точке Po; в случае пространства функция остается гармонической в точке Po.

Как следует из определения, функция Грина непрерывна и гармонична всюду в области D за исключением точки Po, в которой она имеет особенность типа в плоскости или в пространстве. Функцию Грина иногда называют функцией источника.

Функция Грина G(P,Po) (если она существует) однозначно определяется свойствами (i)-(iii). Кроме того, G(P,Po)>0 в области D. Рассмотрим, к примеру, плоскую область D. Для того, чтобы доказать единственность функции Грина, предположим противное: пусть G1, и G2 - две функции, обладающие свойствами (i)-(iii) для заданных области D и точки . Тогда (G1 — G2) остается гармонической в любой точке области D, включая и точку Po, поскольку вблизи точки Po можно записать

(41)

Каждая скобка в правой части (41) представляет собой функцию, гармоническую всюду в D (см. свойство (iii)), поэтому и разность (G1 — G2) - функция гармоническая всюду в D. Кроме того, на границе D функция Следовательно, по принципу максимума в области D.

Далее, если D1 - часть области D, находящаяся вне малой окрестности точки Po, то, согласно условиям (i)-(iii), функция G непрерывна в гармонична в D1, и на границе D1 принимает неотрицательные значения (так как при ). Поэтому по принципу максимума в D1 причем нулевое значение внутри области D1 функция принимать не может. Это означает, что всюду в D.

Пример 1. На плоскости рассмотрим круг радиуса R с центром в начале координат. Построим функцию Грина в круге. При построении этой функции нам понадобится понятие сопряженных точек. Точки Po и Р* называются сопряженными относительно окружности, если они лежат на одном луче, исходящем из центра O окружности, и произведение их расстояний от центра равно квадрату радиуса: (см. рис.16).

 

 

Рис. 16

 

Обозначим через ro =|OPo| и r* =|OP*|. Тогда ro r*=R2. Так как точки Po и Р лежат на одном луче, выходящем из начала координат, то

 

Возьмем функцию

(42)


где r =|PoP|, r1 =|PP*| (см. рис.17). Проверим, что она является функцией Грина для круга.

По теореме косинусов и , где ρ=|OP|.

 

Рис. 17


Воспользовавшись равенством ro r*=R2, получим Таким образом, величины r и r1 выражаются через R, ρ, ro, φ, φo, и, в конечном счете, через R, x, y, xo, yo. Покажем, что функция G(P,Po) удовлетворяет пунктам (i)-(iii) определения. Очевидно, что функция непрерывна всюду в замкнутом круге кроме точки Ро (когда r = 0). На границе круга расстояние ρ=R и, следовательно,

 

Отсюда Функция G(P,Po) состоит из двух слагаемых. Первое слагаемое-фундаментальное решение уравнения Лапласа и,следовательно, гармоническая функция всюду, кроме точки Po. Функция является гармонической всюду в области D, так как точка Р принадлежит области, а точка Р* лежит вне области D и, следовательно, r1 >0. Гармоничность этой функции легко проверяется, если записать оператор Лапласа в полярной системе координат с полюсом в точке Р* (см.аналогичную формулу (33*) с полюсом в точке О):

 

Поэтому функция G(P,Po) гармоническая в области D всюду, кроме точки Ро, а разность G(P,Po) - ln(1/r) — гармоническая и в точке Ро.

Аналогично строится функция Грина для шара радиуса R. Она имеет вид где r=|PoP|, r1=|PP*|, ro=|OPo|. Точка P*(x*, y*, z*) сопряженная точке Рoo, уo, zo) относительно сферы радиуса R с центром в точке О, то есть . Координаты x*, y*, z* вычисляются по формулам:

 

Пример 2. Функцию Грина можно рассматривать не только для ограниченных, но и для неограниченных областей. В качестве примера построим функцию Грина для полуплоскости. Для этого определим точки, сопряженные относительно прямой: точки Ро и Р* называются сопряженными относительно прямой, если они симметричны относительно этой прямой (см. рис.18).

 

Рис. 18 Рис. 19

 

Функция где
,
(см. рис.19), удовлетворяет свойствам (i)-(iii) в полуплоскости у > 0. В самом деле, на границе области при у = 0 расстояние r = r1, поэтому Гармоничность функции всюду в области у > 0 проверяется непосредственно вычислением частных производных:

Поэтому

 

Следовательно, функция G(P,Po) гармоническая в области у > 0 всюду, кроме точки Ро, а разность G(P,Po) - ln(1/r) гармоническая и в точке Ро.

Для полупространства z > 0 функция Грина имеет вид

где

 



<== предыдущая лекция | следующая лекция ==>
Он выполняет следующие важные | Безупречное здоровье: как вы расцветаете снаружи и внутри
Поделиться с друзьями:


Дата добавления: 2016-11-02; Мы поможем в написании ваших работ!; просмотров: 973 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студенческая общага - это место, где меня научили готовить 20 блюд из макарон и 40 из доширака. А майонез - это вообще десерт. © Неизвестно
==> читать все изречения...

2346 - | 2305 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.013 с.