Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Ручной период докомпьютерной эпохи




ПОЛИТЕХНИЧЕСКИЙ ИНСТИТУТ (ФИЛИАЛ)

ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ

«ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

В Г. ТАГАНРОГЕ РОСТОВСКОЙ ОБЛАСТИ

ПИ (филиал) ДГТУ в г. Таганроге

 

Автомобилестроение и сервис транспортных средств

ИСТОРИЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ

Контрольные задания для студентов – заочников направления 09.03.02 «Информационные технологии» по курсу «История развития вычислительной техники»

(бакалавриат)

2016 г.

Содержание

 

Введение

1. Теоретическая часть:

1.1. Ручной период докомпьютерной эпохи…………………………………3

1.2. Механический этап………………………………………………………...5

1.3. Электромеханический этап………………………………………….……6

1.4. Поколение современных ЭВМ…………………………………………...7

1.5. Выводы теоретической части……………………………………………..8

2. Общие методические требования к контрольной работе……………………9

3. КОНТРОЛЬНАЯ РАБОТА…………………………...…………………...……11

 

 

Введение

Вычислительная техника является важнейшим компонентом процесса вычислений и обработки данных. Первыми приспособлениями для вычислений были, вероятно, всем известные счётные палочки, которые и сегодня используются в начальных классах многих школ для обучения счёту. Развиваясь, эти приспособления становились более сложными, например, такими как финикийские глиняные фигурки, также предназначаемые для наглядного представления количества считаемых предметов, однако для удобства, помещаемые при этом в специальные контейнеры. Такими приспособлениями, похоже, пользовались торговцы и счетоводы того времени.

Постепенно из простейших приспособлений для счёта рождались всё более и более сложные устройства: Абак, логарифмическая линейка, механический арифмометр, электронный компьютер. Несмотря на простоту ранних вычислительных устройств, опытный счетовод может получить результат при помощи простых счёт даже быстрее, чем нерасторопный владелец современного калькулятора. Естественно, сама по себе, производительность и скорость счёта современных вычислительных устройств давно уже превосходят возможности самого выдающегося расчётчика-человека.

На протяжении всего своего существования люди использовали разного рода и конструкции вычислительные аппараты. Некоторые из них и по сей день используются в повседневной жизни, а некоторые затерялись в переулках времени.

Знание истории развития вычислительной техники как основы компьютерной информатики – необходимый составной элемент компьютерной культуры.

 

 

Ручной период докомпьютерной эпохи

Ручной период начался на заре человеческой цивилизации. Фиксация результатов счета у разных народов на разных континентах производилась разными способами: пальцевой счет, нанесение засечек, счетные палочки, узелки и т.д. Наконец, появление приборов, использующих вычисление по разрядам, как бы предполагали наличие некоторой позиционной системы счисления, десятичной, пятеричной, троичной и т.д. К таким приборам относятся абак, русские, японские, китайские счеты.

Историю цифровых устройств начать следует со счетов. Подобный инструмент был известен у всех народов. Древнегреческий абак (доска или «саламинская доска» по имени острова Саламин в Эгейском море) представлял собой посыпанную морским песком дощечку. На песке проходили бороздки, на которых камешками обозначались числа. Одна бороздка соответствовала единицам, другая - десяткам и т.д. Если в какой-то бороздке при счете набиралось более 10 камешков, их снимали и добавляли один камушек в следующем разряде. Римляне усовершенствовали абак, перейдя от деревянных досок, песка и камешков к мраморным доскам с выточенными желобками и мраморными шариками. Китайские счеты суан – пан состояли из деревянной рамки, разделенной на верхние и нижние секции. Палочки соотносятся с колонками, а бусинки – с числами. У китайцев в основе счета лежала не десятка, а пятерка.

Суан - пан разделены на две части: в нижней части на каждом ряду располагаются по 5 косточек, в верхней части – по 2. Таким образом, для того, чтобы выставить на этих счетах число 6, ставили сначала косточку, соответствующую пятерке, а затем добавляли одну косточку в разряд единиц.

У японцев это же устройство для счета носило название серобян.

 

На Руси долгое время считали по косточкам, раскладываемым в кучки. Примерно с 15 века получил распространение «дощатый счет», завезенный, видимо, западными купцами с ворванью и текстилем. «Дощатый счет» почти не отличался от обычных счетов и представлял собой рамку с укрепленными горизонтальными веревочками, на которые были нанизаны просверленные сливовые или вишневые косточки.

В 9 веке индийские ученые сделали одно из величайших открытий в математике. Они изобрели позиционную систему счисления, которой теперь пользуется весь мир.

При записи числа, в котором отсутствует какой - либо разряд (например, 110 или 16004), индийцы вместо названия цифры говорили слово «пусто». При записи на месте «пустого» разряда ставили точку, а позднее рисовали кружок. Такой кружок называется «сунья».

Арабские математики перевели это слово по смыслу на свой язык – они говорили «сифр». Современное слово «нуль» происходит от латинского.

В конце 15 – начале 16 века Леонардо да Винчи создал 13- разрядное суммирующее устройство с десятизубными кольцами. Основу машины по описанию составляли стержни, на которые крепились два зубчатых колеса, большее с одной стороны стержня, а меньшее – с другой. Эти стержни должны были располагаться таким образом, чтобы меньшее колесо на одном стержне входило в зацепление с большим колесом на другом стержне. При этом меньшее колесо второго стержня сцеплялось с большим колесом третьего и т.д. Десять оборотов первого колеса, по замыслу автора, должны были приводить к одному полному обороту второго, а десять оборотов второго - к полному обороту третьего и т.д. Вся система, состоящая из 13 стержней с зубчатыми колесами должна была, приводиться в движение набором грузов.

 

Механический этап

Развитие механики в 17 веке стало предпосылкой вычислительных устройств и приборов, использующих механический принцип вычислений, обеспечивающий перенос старшего разряда. Использование таких машин способствовало «автоматизации умственного труда».

Увеличение во второй половине 19 века вычислительных работ в целом ряде областей человеческой деятельности выдвинуло настоятельную потребность в ВТ и повышение требований к ней.

В этот период английский математик Чарльз Бэббидж выдвинул идею создания программно-управляемой счетной машины, имеющей арифметическое устройство, устройство управления, ввода и печати.

Первая спроектированная Беббиджем машина, Разностная машина, работала на паровом двигателе. Работающая модель была шестицифровым калькулятором, способным производить вычисления и печатать цифровые таблицы.

Главным достижением этой эпохи можно считать изобретение арифмометра ученым, по имени Однер. Главная особенность детища Однера заключается в применении зубчатых колес с переменным числом зубцов вместо ступенчатых валиков. Оно проще валика конструктивно и имеет меньшие размеры.

Первоначально появление в этот период ЭВМ не очень повлияло на выпуск арифмометров, прежде всего из-за различия в назначении, а также в стоимости и распространенности. Однако, с 60 годов в массовое использование все активнее проникают электронные клавишные вычислительные машины, выпускаемые вначале на лампах, а с 1964 г. на транзисторах. Лидерство в этом направлении сразу же захватила Япония, которая отличалась миниатюризацией электронной техники, включая ВТ.

Электромеханический этап

Электромеханический этап развития ВТ явился наименее продолжительным и охватывает около 60 лет – от первого табулятора Г. Холлерита до первой ЭВМ ENIAK (1945). Предпосылками создания проектов этого типа явились как необходимость проведения массовых расчетов, так и развитие прикладной электротехники. Классическим типом средств электромеханического этапа был счетно-аналитический комплекс, предназначенный для обработки информации на перфокарточных носителях.

Значение работ Холлерита для развития ВТ определяется двумя факторами. Во-первых, он стал основоположником нового направления в ВТ – счетно-перфорационного с соответствующим им оборудованием для широкого круга экономических и научно-технических расчетов. Это направление привело к созданию машиносчетных станций, послуживших прообразом современных вычислительных центров. Во-вторых, даже в наше время использование большого числа разнообразных устройств ввода/вывода информации не отменило полностью использование перфокарточной технологии.

Заключительный период электромеханического этапа развития вычислительной техники характеризуется созданием целого ряда сложных релейных и релейно-механических систем с программным управлением, характеризующихся алгоритмической универсальностью и способных выполнять сложные научно-технические вычисления в автоматическом режиме со скоростями, на порядок превышающими скорость работы арифмометров с электропроводом. Эти аппараты можно рассматривать в качестве прямых предшественников универсальных ЭВМ.

 

Поколение современных ЭВМ

Историю развития современных ЭВМ разделяют на 4 поколения. Но деление компьютерной техники на поколения — весьма условная, нестрогая классификация по степени развития аппаратных и программных средств, а также способов общения с компьютером.

Идея делить машины на поколения вызвана к жизни тем, что за время короткой истории своего развития компьютерная техника проделала большую эволюцию, как в смысле элементной базы (лампы, транзисторы, микросхемы и др.), так и в смысле изменения её структуры, появления новых возможностей, расширения областей применения и характера использования. Этот прогресс показан в таблице.

П О К О Л Е Н И Я Э В М ХАРАКТЕРИСТИКИ
I II III IV
Годы применения 1946-1958 1958-1964 1964-1972 1972 - настоящее время
Основной элемент Эл. лампа Транзистор ИС БИС
Количество ЭВМ в мире (шт.) Десятки Тысячи Десятки тысяч Миллионы
Быстродействие (операций в секунду) 103-144 104-106 105-107 106-108
Носитель информации Перфокарта, Перфолента Магнитная Лента Диск Гибкий и лазерный диск
Размеры ЭВМ Большие Значительно меньше Мини-ЭВМ микроЭВМ




Поделиться с друзьями:


Дата добавления: 2016-11-02; Мы поможем в написании ваших работ!; просмотров: 6302 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Не будет большим злом, если студент впадет в заблуждение; если же ошибаются великие умы, мир дорого оплачивает их ошибки. © Никола Тесла
==> читать все изречения...

2541 - | 2236 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.