Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Биомасса, биологическая продуктивность экосистем, правило 10%




Биома́сса (биоматерия) — совокупная масса растительных и животных организмов, присутствующих в биогеоценозе в момент наблюдения.

Среди наземных животных организмов наибольшую по массе часть составляют насекомые, членистоногие и подобные им, обеспечивающие существование растительных организмов. (Более 80-ти процентов сухопутной биомассы).

Человечество, как часть млекопитающих, представляет собой менее 1-го кубического километра, что составляет одну пренебрежимо малую, несоизмеримую со всей биомассой, часть всей биомассы Земли.

Биомасса —это вес отдельного растения, животного или всех живых организмов, обитающих на определенной площади в определенном объеме, независимо от того, живут ли они в воздухе, воде или почве. Учеными были проведены подсчеты биомассы всех организмов на Земле.

На суше основную часть биомассы составляют растения, а в океане — животные. Причем биомасса обитателей океана, занимающего 70,2% поверхности планеты. Интересен и другой факт: число видов растений на Земле составляет 21% общего числа всех живых организмов, а животных — 79%, но, несмотря на это, биомасса животных не превышает на нашей планете 1% всей биомассы.

Эти подсчеты показывают, что растения — основные производители биологической продукции на нашей планете.

Биологическая продуктивность, способность организмов производить органическое вещество в процессе личной жизнедеятельности. Биологическая продуктивность измеряется количеством органического вещества, создаваемого за единицу времени на единице площади. Различают первичную (создаваемую растениями и др. автотрофными организмами) и вторичную (создаваемую гетеротрофными организмами) биологическую продуктивность. К первичной биологической продуктивности относят валовую (общее количество вещества, синтезируемого растениями в единицу времени) и чистую продукцию, которая остается в растениях после затрат на их дыхание. Чем благоприятнее условия среды, тем выше относительная доля чистой продукции. В неблагоприятных условиях (пустыня) растения затрачивают на дыхание до 80% валовой биологической продуктивности, а в благоприятных условиях, при обильных ресурсах тепла и влаги - не более 30%. Вторичная Б. п. в 20-50 раз меньше, чем первичная. По первичной Б. п. экологической системы разделяют на четыре класса.

1. Экосистемы очень высокой биологической продуктивности - свыше 2 кг/м2 в год. К ним относят влажные тропические леса и коралловые рифы, тростниковые заросли в дельтах больших рек.

2. Экосистемы высокой биологической продуктивности - 1-2 кг/м2 в год. Это широколиственные леса, прибрежные заросли рогоза или тростника на озере, посевы кукурузы и многолетних трав, выращенные с применением орошения и высоких доз минеральных удобрений.

3. Экосистемы умеренной биологической продуктивности - 0,25-1 кг/м2 в год. Это леса таежной зоны, преобладающая часть сельскохозяйственных посевов, сенокосные луга и степи, заросшие водными растениями озера, морские луга из водорослей.

4. Экосистемы низкой биологической продуктивности - менее 0,25 кг/м2 в год. Это пустыни жаркого климата, арктические пустыни островов Северного Ледовитого океана, тундры, полупустыни, вытоптанные скотом степные пастбища с низким и редким травостоем, горные степи. Такую же низкую биологическую продуктивность имеет большинство морских экосистем. Средняя биологическая продуктивность экосистем Земли не превышает 0,3 кг/м2 в год, т. к. на земле преобладают низкопродуктивные экосистемы пустынь и океанов. От биологической продуктивности следует отличать урожай и биомассу.

Р. Линдеман (1942) сформулировал закон пирамиды энергий, или правило 10 %.

Выделение энергии с экскрементами у плотоядных животных (например, хищников) невелико, у травоядных оно более значительно, а гусеницы некоторых насекомых, питающиеся растениями, выде­ляют с экскрементами до 70% энергии. Однако при всем разнооб­разии расходов энергии в среднем максимальны траты на дыха­ние, которые в сумме с неусвоенной пищей составляют около 90% от потребленной. Поэтому переход энергии с одного трофического уровня на другой в среднем принимается близким к 10% от энер­гии, потребленной с пищей. Эта закономерность рассматривается обычно как «правило десяти процентов».

Данное правило надо оценивать как относительное, ориентиро­вочное. Вместе с тем из него следует, что цепь питания имеет ограниченное количество уровней, обычно не более 4—5. Пройдя через них, практически вся энергия оказывается рассеянной.

Закономерности потока и рассеивания энергии имеют важные в практическом отношении следствия. Во-первых, с энергетической точки зрения крайне нецелесообразно потребление животной про­дукции, особенно с высоких уровней цепей питания. Образование этой продукции связано с большими потерями (рассеиванием) энер­гии. Особенно велики потери энергии при переходе с первого тро­фического уровня на второй, от растений к травоядным животным.

15. Энергетическое обеспечение биологического круговорота.

Все преобразования веществ в процессе круговорота требуют затрат энергии. Ни один живой организм не продуцирует энергию - она может быть получена только извне. В современной биосфере главнейший источник энергии, утилизируемой в биогенном круловороте, - это энергия солнечного излучения. Соответственно первый этап использования и преобразования энергии в цепях круговорота - фотосинтез, в процессе
которого создаются вещества для построения тела растительного организма. Энергия, полученная в виде солнечной радиации (ФАР), в процессе фотосинтеза преобразуется в энергию химических связей. Процесс аккумуляции энергии в организме фотосинтетиков сопряжён с увеличением массы организма. Массу веществ, созданных продуцентомфотосинтетиком, обозначают как первичную продукцию; это биомасса растительных тканей. Лишь 15% энергии солнечного излучения достигает поверхности
Земли и только 1% связывается в виде органического вещества растительности (74% составляет тепло и 10% - отражённая энергия). Из суммы связанной в процессе продукции энергии около половины расходуется на жизненные процессы (потери на дыхание). Оставшиеся 50% аккумулированной энергии составляет рост биомассы. Таким образом, чистая продукция соответствует примерно 0,5% солнечной энергии, падающей на
Землю. По некоторым другим расчётам, эффективность фотосинтеза оказывается ещё ниже - порядка 0,1%.
Накопленная в результате фотосинтеза биомасса растений (первичная продукция) - это резерв, из которого часть используется в качестве пищи организмами-гетеротрофами (консументами I порядка). По тем же приблизительным расчётам, в пищу фитофагам изымается около 40% фитомассы; оставшиеся 60% означают реальную массу растительности в экосистеме.
Примерно в такой же последовательности идёт дальнейшее использование энергии организмами-гетеротрофами. Полученная с пищей энергия (так называемая большая энергия) соответствует энергетической стоимости общего количества съеденной пищи.
Усвоенная энергия, за вычетом энергии, содержащейся в выделениях организма (экскретах), составляет метаболизированную энергию. Часть её выделяется в виде тепла в процессе переваривания пищи и либо рассеивается, либо используется на терморегуляцию. Оставшаяся энергия подразделяется на энергию существования, которая немедленно расходуется на различные формы жизнедеятельности (по существу это тот же расход на
«дыхание»), и продуктивную энергию, которая аккумулируется (хотя бы временно) в виде массы нарастающих тканей, энергетических резервов, половых продуктов. Энергия существования складывается из затрат на фундаментальные жизненные процессы (основной обмен, или базальный метаболизм) и энергии, расходуемой на различные формы
деятельности. У гомойотермных животных к этому добавляются расходы энергии на терморегуляцию. Все эти затраты заканчиваются рассеиванием энергии в виде тепла - опять-таки в силу того, что ни одна функция не реализуется с КПД, равным 100%.

 





Поделиться с друзьями:


Дата добавления: 2016-11-02; Мы поможем в написании ваших работ!; просмотров: 3629 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

80% успеха - это появиться в нужном месте в нужное время. © Вуди Аллен
==> читать все изречения...

2240 - | 2105 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.