После возникновения механической картины мира процесс формирования специальных картин мира протекает уже в новых условиях. Специальные картины мира, возникавшие в других областях естествознания, испытывали воздействие физической картины мира как лидера естествознания и, в свою очередь, оказывали на физику активное обратное воздействие. В самой же физике построение каждой новой картины мира происходило не путем выдвижения натурфилософских схем с их последующей адаптацией к опыту, а путем преобразования уже сложившихся физических картин мира, конструкты которых активно использовались в последующем теоретическом синтезе (примером может служить перенос представлений об абсолютном пространстве и времени из механической в электродинамическую картину мира конца XIX столетия).
Ситуация взаимодействия картины мира и эмпирического материала, характерная для ранних стадий формирования научной дисциплины, воспроизводится и на более поздних этапах научного познания. Даже тогда, когда наука сформировала слой конкретных теорий, эксперимент и наблюдение способны обнаружить объекты, не объясняемые в рамках существующих теоретических представлений. Тогда новые объекты изучаются эмпирическими средствами, и картина мира начинает регулировать процесс такого исследования, испытывая обратное воздействие его результатов. Описанные выше примеры с исследованием катодных лучей могут служить достаточно хорошей иллюстрацией взаимодействия картины мира и опыта применительно к процессу физического исследования.
Аналогичные ситуации можно обнаружить и в других науках. Так, в современной астрономии, несмотря на довольно развитый слой теоретических моделей и законов, значительное место принадлежит исследованиям, в которых картина мира непосредственно регулирует процесс наблюдения и формирования эмпирических фактов. Астрономическое наблюдение весьма часто обнаруживает новый тип объектов или новые стороны взаимодействий, которые не могут быть сразу объяснены в рамках имеющихся теорий. Тогда картина реальности активно целенаправляет все последующие систематические наблюдения, в которых постепенно раскрываются особенности нового объекта.
Характерным примером в этом отношении может служить открытие и изучение квазаров. После обнаружения первого квазара - радиоисточника 3С 48 - сразу же возник вопрос, к какому типу космических объектов он относится. В картине исследуемой реальности, сложившейся ко времени открытия квазаров, наиболее "подходящими" типами объектов для этой цели могли быть звезды либо очень удаленные галактики. Обе гипотезы целенаправленно проверялись в наблюдениях. Именно в процессе такой проверки были обнаружены первые свойства квазаров. Дальнейшее исследование этих объектов эмпирическими средствами также проходило при активной корректировке со стороны картины реальности. В частности, можно установить ее целенаправляющую роль в одном из ключевых моментов этого исследования, а именно - открытии большого красного смещения в спектрах квазаров. В истоках этого открытия лежала догадка М. Шмидта, который отождествил эмиссионные линии в спектре квазаров с обычной бальмеровской серией водорода, допустив большое красное смещение (равное 0,158). Внешне эта догадка выглядит сугубо случайной, поскольку к этому времени считалось повсеместно, что квазары являются звездами нашей Галактики, а звезды Галактики не должны иметь такое смещение. Поэтому, чтобы возникла сама идея указанного отождествления линий, нужно было уже заранее выдвинуть экстравагантную гипотезу. Однако эта гипотеза перестает быть столь экстравагантной, если принять во внимание, что общие представления о структуре и эволюции Вселенной, сложившиеся к этому периоду в астрономии, включали представления о происходящих в галактиках грандиозных взрывах, которые сопровождаются выбросами вещества с большими скоростями, и о расширении нашей Вселенной. Любое из этих представлений могло генерировать исходную гипотезу о возможности большого красного смещения в спектре квазаров.
С этих позиций за случайными элементами в рассматриваемом открытии уже прослеживается его внутренняя логика. Здесь выявляется важная сторона регулятивной функции, которую выполняла картина мира по отношению к процессу наблюдения. Эта картина помогала не только сформулировать первичные гипотезы, которые целенаправляли наблюдения, но и помогала найти правильную интерпретацию соответствующих данных, обеспечивая переход от данных наблюдения к фактам науки.
Таким образом, первичная ситуация, характеризующая взаимодействие картины мира с наблюдениями и экспериментами, не отмирает с возникновением в науке конкретных теорий, а сохраняет свои основные характеристики как особый случай развития знания в условиях, когда исследование эмпирически обнаруживает новые объекты, для которых еще не создано адекватной теории.