энергии — важное направление в области защиты окружающей среды
Энергетика является сердцем промышленного и сельскохозяйственного производства и обеспечивает комфортное существование человечества. Основным энергоносителем в XIX веке являлся уголь, сжигание которого приводило к росту выбросов дыма, сажи, копоти, золы, вредных газовых компонентов: СО, S02, оксидов азота и т. д. Развитие научно-технического прогресса привело к существенному изменению энергетической базы промышленности, сельского хозяйства, городов и других населённых пунктов. Существенно возросла доля таких энергоносителей, как нефть и газ, экологически более чистых, чем уголь. Однако ресурсы их не беспредельны, что накладывает на человечество обязанность поиска новых, альтернативных возобновляемых источников энергии. К ним относятся солнечная и атомная энергия, геотермальный и гелиотермальные виды энергии, энергия приливов и отливов, энергия рек и ветров. Эти виды энергии являются неисчерпаемыми и их производство практически не оказывает вредного воздействия на окружающую среду.
Наиболее развиты в настоящее время атомные энергетические установки — АЭС. Доля производства электроэнергии с помощью атомной энергии в ряде стран очень высока: в Литве она превышает 80%, во Франции — 75, в России достигает 13%. Следует лишь совершенствовать безопасность работы АЭС, что подтвердила авария на Чернобыльской и других АЭС. Топливная база для их работы практически неограничена, общие запасы урана в морях и океанах составляют примерно 4-Ю9 т.
Достаточно широко применяются геотермальные и гелио-термальные источники энергии. Циркулирующая на глубине 2-3 км вода нагревается до температуры, превышающей 100°С за счёт радиоактивных процессов, химических реакций и других явлений, протекающих в земной коре. В ряде районов земли такие воды выходят на поверхность. Значительные запасы их имеются в нашей стране на Дальнем Востоке, Восточной Сибири, Северном Кавказе и других районах. Существуют запасы высокотемпературного пара и пароводяной смеси на Камчатке, Курильских островах и в Дагестане.
Технологические процессы получения тепловой и электрической энергии из таких вод достаточно хорошо разработаны, их себестоимость в 2-2,5 раза ниже тепловой энергии, получаемой в обычных котельных. На Камчатке работает геотермальная электростанция мощностью 5 кВт. Предполагается сооружать такие, но более мощные 100 и 200 МВт блоки. В Краснодарском крае теплота подземных вод используется для теплоснабжения промышленных предприятий, населения, животноводческих комплексов, многочисленных теплиц.
За последнее время все шире используется солнечная энергия. Солнечные энергетические установки могут быть тепловыми, в которых используется традиционный паротурбинный цикл и фотоэлектрическими, в которых солнечное излучение с помощью специальных батарей преобразуется в электроэнергию и теплоэнергию. Стоимость таких гелиоэлектростанций пока ещё велика: для станций мощностью в 5-100 МВт она в 10 раз превышает капитальные затраты ТЭС аналогичной мощности. Кроме того, для получения энергии требуются большие площади зеркал — около 50 км2 на 109 кВтч электроэнергии. Солнечные электростанции являются перспективными, так как они экологически чистые, а стоимость произведённой на них электроэнергии будет неуклонно снижаться по мере совершенствования технологических процессов, оборудования и используемых материалов. Вода с давних пор используется человечеством в качестве источника энергии, ГЭС остаются перспективными и экологически чистыми энергетическими установками при условии, если при их строительстве не происходит затопления пойменных земель и лесных угодий.
К новым источникам энергии относится энергия морских приливов и отливов. Принцип действия приливных электростанций основан на том, что энергия падения воды, проходящей через гидротурбины, вращает их и приводит в движение генераторы электрического тока. На однобассейновой приливной электростанции двойного действия, работающей во время прилива и отлива, можно вырабатывать энергию четыре раза в сутки при наполнении и опорожнении бассейна в течение 4-5 часов. Агрегаты такой электростанции должны быть приспособлены для работы в прямом и обратном режимах и служить как для производства электроэнергии, так и для перекачки воды. Крупная приливная электростанция работает во Франции на берегу Ла-Манша, в устье р. Ране. В России в 1968 г. пущена в эксплуатацию небольшая электростанция на побережье Баренцева моря в губе Кислое. Разработаны проекты Мезенской приливной станции на берегу Белого моря, а также Пенжинской и Тугурской — на берегу Охотского моря.
Энергию океана можно использовать, сооружая волновые электростанции, установки, использующие энергию морских течений, разницу температур поверхностных теплых и глубинных холодных слоев воды или подлёдных слоев воды и воздуха. Проекты таких энергетических установок разрабатываются в ряде стран: США, Японии, России.
Перспективно использование энергии ветра. Ветроэнергетические установки до определённого предела не влияют на состояние окружающей среды. Парки ветроэнергетических установок большой мощности построены в Германии, Дании, США и других странах. Единичная мощность таких установок достигает 1 МВт. В Швеции работает самая сильная в мире ветроэнергетическая установка мощностью 2 МВт. В России имеются районы благоприятные для строительства ветровых электростанций — на Крайнем Севере, Азово-Черноморском регионе, где постоянно дуют северо-восточные ветры. Потенциальные мощности ветровых электростанций, которые могут быть построены на этих территориях, значительно превышают мощности существующих в настоящее время в России электростанций. Экономическая целесообразность использования энергии ветра для производства электроэнергии в больших масштабах и использования ветроэнергетических установок в энергетических системах изучена пока недостаточно. Исследования, проведённые в США, свидетельствуют о том, что, если затраты на сооружение подземных хранилищ нефти объемом в 1 млрд. бареллей в совокупности со стоимостью этой нефти направить на строительство ветровых электростанций, то их мощность может быть доведена до 37000 МВт, а количество сэкономленной нефти составит 1,15 млрд. бареллей. В результате помимо экономии такого ценного сырья, как нефть, существенно снизится вредная нагрузка на окружающую среду при её сжигании в энергетических установках.
Одним из основных источников вредных веществ в окружающей среде является транспорт. Рассматривается возможность замены используемого в настоящее время углеводородного топлива на чистый водород, при сгорании которого образуется вода, позволила бы исключить проблему загрязнения атмосферы отработанными газами автомобильных двигателей. Использование водорода затрудняется тем, что в настоящее время недостаточно отработана технология его получения, транспортировки и хранения, что приводит к большим затратам электроэнергии при производстве водорода методом электролиза и высокой его стоимости. Совершенствование указанных технологических процессов позволит снизить стоимость водорода, который станет топливом, способным конкурировать по экономическим показателям с традиционными видами топлива, а по экологическим — превосходить их.
Замена автомобилей, работающих на углеводородном топливе, электромобилями также позволит существенно снизить вредную нагрузку на окружающую среду. Исследования американских и японских фирм в этой области свидетельствуют о том, что их лучшие электромобили, работающие на никелево-цинковых батареях, вдвое мощнее, чем обычные свинцовые, при скорости 80 км/час и имеют дальность пробега около 400 км. Общий коэффициент полезного действия таких электромобилей в настоящее время невелик и составляет 2% против 4,2% автотранспорта, работающего на углеводородном сырье. По мере совершенствования технологии изготовления аккумуляторных батарей электромобили будут использоваться все шире, что позволит уменьшить вредное воздействие на окружающую среду.