Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Арифметические основы компьютера




Система счисления — это способ записи чисел с помощью заданного набора специальных знаков (цифр).

Существуют позиционные и непозиционные системы счисления.

В непозиционных системах вес цифры (т.е. тот вклад, который она вносит в значение числа) не зависит от ее позиции в записи числа. Так, в римской системе счисления в числе ХХХII (тридцать два) вес цифры Х в любой позиции равен просто десяти.

В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее положения (позиции) в последовательности цифр, изображающих число. Например, в числе 757,7 первая семерка означает 7 сотен, вторая – 7 единиц, а третья – 7 десятых долей единицы.

Сама же запись числа 757,7 означает сокращенную запись выражения

700 + 50 + 7 + 0,7 = 7•102 + 5•101 + 7•100 + 7•10-1 = 757,7.

Любая позиционная система счисления характеризуется своим основанием.

Основание позиционной системы счисления — это количество различных знаков или символов, используемых для изображения цифр в данной системе.

За основание системы можно принять любое натуральное число — два, три, четыре и т.д. Следовательно, возможно бесчисленное множество позиционных систем: двоичная, троичная, четверичная и т.д. Запись чисел в каждой из систем счисления с основанием q означает сокращенную запись выражения

an-1 qn-1 + an-2 qn-2+... + a1 q1 + a0 q0 + a-1 q-1 +... + a-m q-m,

где ai – цифры системы счисления; n и m – число целых и дробных разрядов, соответственно.

В каждой системе счисления цифры упорядочены в соответствии с их значениями: 1 больше 0, 2 больше 1 и т.д.

Продвижением цифры называют замену её следующей по величине.

Продвинуть цифру 1 значит заменить её на 2, продвинуть цифру 2 значит заменить её на 3 и т.д. Продвижение старшей цифры (например, цифры 9 в десятичной системе) означает замену её на 0. В двоичной системе, использующей только две цифры – 0 и 1, продвижение 0 означает замену его на 1, а продвижение 1 – замену её на 0.

Для образования целого числа, следующего за любым данным целым числом, нужно продвинуть самую правую цифру числа; если какая-либо цифра после продвижения стала нулем, то нужно продвинуть цифру, стоящую слева от неё.

Применяя это правило, запишем первые десять целых чисел

в двоичной системе: 0, 1, 10, 11, 100, 101, 110, 111, 1000, 1001;

в троичной системе: 0, 1, 2, 10, 11, 12, 20, 21, 22, 100;

в пятеричной системе: 0, 1, 2, 3, 4, 10, 11, 12, 13, 14;

восьмеричной системе: 0, 1, 2, 3, 4, 5, 6, 7, 10, 11.

Кроме десятичной широко используются системы с основанием, являющимся целойстепенью числа 2, а именно:

двоичная (используются цифры 0, 1);

восьмеричная (используются цифры 0, 1,..., 7);

шестнадцатеричная (для первых целых чисел от нуля до девяти используются цифры 0, 1,..., 9, а для следующих чисел — от десяти до пятнадцати – в качестве цифр используются символы A, B, C, D, E, F).

Из всех систем счисления особенно проста и поэтому интересна для технической реализации в компьютерах двоичная система счисления.

Компьютеры используют двоичную систему потому, что она имеет ряд преимуществ перед другими системами:

· для ее реализации нужны технические устройства с двумя устойчивыми состояниями (есть ток — нет тока, намагничен — не намагничен и т.п.), а не, например, с десятью, — как в десятичной;

· представление информации посредством только двух состояний надежно и помехоустойчиво;

· возможно применение аппарата булевой алгебры для выполнения логических преобразований информации;

· двоичная арифметика намного проще десятичной.

Недостаток двоичной системы — быстрый рост числа разрядов, необходимых для записи чисел.Двоичная система, удобная для компьютеров, для человека неудобна из-за ее громоздкости и непривычной записи. Перевод чисел из десятичной системы в двоичную и наоборот выполняет машина. Перевод восьмеричных и шестнадцатеричных чисел в двоичную систему очень прост: достаточно каждую цифру заменить эквивалентной ей двоичной триадой (тройкой цифр) или тетрадой (четверкой цифр).

Например:

Чтобы перевести число из двоичной системы в восьмеричную или шестнадцатеричную, его нужно разбить влево и вправо от запятой на триады (для восьмеричной) или тетрады (для шестнадцатеричной) и каждую такую группу заменить соответствующей восьмеричной (шестнадцатеричной) цифрой.

При переводе целого десятичного числа в систему с основанием q его необходимо последовательно делить на q до тех пор, пока не останется остаток, меньший или равный q–1. Число в системе с основанием q записывается как последовательность остатков от деления, записанных в обратном порядке, начиная с последнего.

Пример: Перевести число 75 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:

Ответ: 7510 = 1 001 0112 = 1138 = 4B16.

Пpи переводе правильной десятичной дpоби в систему счисления с основанием q необходимо сначала саму дробь, а затем дробные части всех последующих произведений последовательно умножать на q, отделяя после каждого умножения целую часть пpоизведения. Число в новой системе счисления записывается как последовательность полученных целых частей пpоизведения.

Умножение пpоизводится до тех поp, пока дpобная часть пpоизведения не станет pавной нулю. Это значит, что сделан точный пеpевод. В пpотивном случае пеpевод осуществляется до заданной точности. Достаточно того количества цифp в pезультате, котоpое поместится в ячейку.

Пример: Перевести число 0,35 из десятичной системы в двоичную, восьмеричную и шестнадцатеричную:

Ответ: 0,3510 = 0,010112 = 0,2638 = 0,5916.

При переводе числа из двоичной (восьмеричной, шестнадцатеричной) системы в десятичную надо это число представить в виде суммы степеней основания его системы счисления.

Рассмотрим основные арифметические операции: сложение, вычитание, умножение и деление. Правила выполнения этих операций в десятичной системе хорошо известны — это сложение, вычитание, умножение столбиком и деление углом. Эти правила применимы и ко всем другим позиционным системам счисления. Только таблицами сложения и умножения надо пользоваться особыми для каждой системы.

Сложение в шестнадцатеричной системе

При сложении цифры суммируются по разрядам, и если при этом возникает избыток, то он переносится влево.

Пример 1. Сложим числа 15 и 6 в различных системах счисления.

Шестнадцатеричная: F16+616     Ответ: 15+6 = 2110 = 101012 = 258 = 1516. Проверка. Преобразуем полученные суммы к десятичному виду: 101012 = 24 + 22 + 20 = 16+4+1=21, 258 = 2*81 + 5*80 = 16 + 5 = 21, 1516 = 1*161 + 5*160 = 16+5 = 21.

Пример 2. Сложим числа 15, 7 и 3.

Шестнадцатеричная: F16+716+316     Ответ: 5+7+3 = 2510 = 110012 = 318 = 1916. Проверка: 110012 = 24 + 23 + 20 = 16+8+1=25 318 = 3*81 + 1*80 = 24 + 1 = 25 1916 = 1*161 + 9*160 = 16+9 = 25.  

Умножение

Выполняя умножение многозначных чисел в различных позиционных системах счисления, можно использовать обычный алгоритм перемножения чисел в столбик, но при этом результаты перемножения и сложения однозначных чисел необходимо заимствовать из соответствующих рассматриваемой системе таблиц умножения и сложения.

Ввиду чрезвычайной простоты таблицы умножения в двоичной системе, умножение сводится лишь к сдвигам множимого и сложениям.

Деление

Деление в любой позиционной системе счисления производится по тем же правилам, как и деление углом в десятичной системе. В двоичной системе деление выполняется особенно просто, ведь очередная цифра частного может быть только нулем или единицей.

Литература

 

1. Александров П.С. Введение в теорию множеств и общую топологию. – М.: «Наука», Главная редакция физико-математической литературы, 1977.

2. Стол Роберт Р. Множества. Логика. Аксиоматические теории. / Под ред. Шихановича. М.: «Просвещение», 1969.

3. Верещагин Н.К., Шень А. Лекции по математической логике и теории алгоритмов. Часть 1. Начала теории множеств. – М.: МЦНМО, 1999.

4. Новиков П.С. Элементы математической логики. – М.: Наука, 1973. 400с.

5. Клини С. Математическая логика. – М.: Мир, 1973, 480с.

6. Краткий словарь по логике / Д.П. Горский, А.А. Ивин, А.Л. Никифоров;

7. Королев В.Т., Ловцов Д.А., Радионов В.В. Учебно-методический комплекс. Информационные технологии в юридической деятельности – М.: РАП, 2013.

8. Королев В.Т., Ловцов Д.А., Радионов В.В. Информационные технологии в юридиче-ской деятельности / Под ред. Д.А. Ловцова. – М.: РАП, 2011.

9. Королев В. Т. Информационные технологии в юридической деятельности. Учебно-методические материалы для практических занятий. - М.: РАП, 2012. (имеется в классе персо-нальных компьютеров и на сайте академии).

10. Королев В.Т., Ловцов Д.А., Радионов В.В. Информационные технологии в юридической деятельности / Под ред. Д.А. Ловцова. – М.: РАП, 2011.

11. А.В. Могилев, Н.И. Пак, Е.К. Хеннер. Информатика. / под ред. А.В. Могилева. М., Издательский центр «Академия». Изд. 1, 2006 г., 327 с..

12. Лихтарников Л.М. Занимательные логические задачи. – СПб.: Мик, 1997.

Тема 3. Информационные технологии, аппаратное и про­граммное обеспечение.

При изучении данной темы следует обратить внимание на структуру и принцип работы компьютера, общую характеристику программного обеспечения и выделить основные элементы базовой конфигурации компь­ютера.





Поделиться с друзьями:


Дата добавления: 2016-11-02; Мы поможем в написании ваших работ!; просмотров: 2205 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наука — это организованные знания, мудрость — это организованная жизнь. © Иммануил Кант
==> читать все изречения...

2308 - | 2104 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.