Магнитный материал, используемый в переменных полях, должен иметь возможно меньшие потери на перемагничивание, которые складываются в основном из потерь на гистерезис и вихревые токи.
Для уменьшения потерь на вихревые токи в трансформаторах выбирают магнитомягкие материалы с повышенным удельным сопротивлением. Обычно магнитопроводы собирают из отдельных изолированных друг от друга тонких листов. Широкое применение получили ленточные сердечники, навиваемые из тонкой ленты с межвитковой изоляцией из диэлектрического лака. К листовым и ленточным материалам предъявляется требование высокой пластичности, благодаря которой облегчается процесс изготовления изделий из них.
Важным требованием к магнитомягким материалам является обеспечение стабильности их свойств как во времени, так и по отношению к внешним воздействиям, таким, как температура и механические напряжения. Из всех магнитных характеристик наибольшим изменениям в процессе эксплуатации материала подвержены магнитная проницаемость (особенно в слабыз полях) и коэрцитивная сила.
Железо и низкоуглеродистые стали. Основным компонентом большинства магнитных материалов является железо. Само по себе железо в элементарном виде представляет собой типичный магнитомягкий материал, магнитные свойства которого существенно зависят от содержания примесей. Среди элементарных ферромагнетиков железо обладает наибольшей индукцией насыщения (около 2,2 Тл).
Кремнистая электротехническая сталь (по ГОСТу электротехническая тонколистовая) является основным магнитомягким материалом массового потребления.
Низкокоэрцитивные сплавы. Пермаллои - железоникелевые сплавы, обладающие весьма большой магнитной проницаемостью в области слабых полей и очень маленькой коэрцитивной силой. Пермаллои подразделяют на высоко- и низконикелевые. Высоконикелевые пермаллои содержат 72-80% никеля, а низконикелевые - 40-50% никеля. Магнитные свойства пермаллоев очень чувствительны к внешним механическим напряжениям, зависят от химического состава и наличия инородных примесей в сплаве, а также очень резко изменяются в зависимости от режимов термообработки материала (температуры, скорости нагрева и охлаждения, окружающей среды и т.д.). Термическая обработка высоконикелевых пермаллоев сложнее, чем низконикелевых.
Удельное сопротивление высоконикелевых пермаллоев почти в три раза меньше, чем у низконикелевых, поэтому при повышенных частотах предпочтительнее использовать низконикелевые пермаллои. Кроме того, магнитная проницаемость пермаллоев сильно снижается с увеличением частоты. Это объясняется возникновением в материале заметных вихревых токов из-за небольшого удельного сопротивления.
Под высокочастотными магнитомягкими материалами понимают вещества, которые должны выполнять функции магнетиков при частотах свыше нескольких сотен или тысяч герц. По частотному диапазону применения их в свою очередь можно подразделить на материалы для звуковых, ультразвуковых и низких радиочастот, для высоких радиочастот и для СВЧ.
По физической природе и строению высокочастотные магнитомягкие материалы подразделяют на магнитоэлектрики и ферриты.
Ферриты представляют собой оксидные магнитные материалы, у которых спонтанная намагниченность доменов обусловлена нескомпенсированным антиферромагнетизмом.
Большое удельное сопротивление, превышающее удельное сопротивление железа в 103-1013 раз, а следовательно, и относительно незначительные потери энергии в области повышеных и высоких частот наряду с достаточно высокими магнитными свойствами обеспечивают ферритам широкое применение в радиоэлектронике.
Для ферритов характерна относительно большая диэлектрическая проницаемость, которая зависит от частоты и состава материала. С повышением частоты диэлектрическая проницаемость ферритов падает.