При классическом подходе к определению вероятности крайние значения (ноль и единица) получаются посредством точно таких же рассуждений. Пусть из некой урны, в которой находятся 10 красных шаров, наугад извлекается 1 шар. Рассмотрим следующие события:
– из урны будет извлечён красный шар;
– из урны будет извлечён зелёный шар.
Общее количество исходов: . Событию благоприятствуют все возможные исходы , следовательно, , то есть данное событие достоверно. Для 2-го же события благоприятствующие исходы отсутствуют , поэтому , то есть событие невозможно.
Особый интерес представляют события, вероятность наступления которых чрезвычайно мала. Хоть такие события и являются случайными, для них справедлив следующий постулат:
в единичном испытании маловозможное событие не произойдёт.
Именно поэтому Вы не сорвёте в лотерее Джек-пот, если вероятность этого события, скажем, равна 0,00000001. Да-да, именно Вы – с единственным билетом в каком-то конкретном тираже. Впрочем, бОльшее количество билетов и бОльшее количество розыгрышей Вам особо не помогут....Когда я рассказываю об этом окружающим, то почти всегда в ответ слышу: «но ведь кто-то выигрывает». Хорошо, тогда давайте проведём следующий эксперимент: пожалуйста, сегодня или завтра купите билет любой лотереи (не откладывайте!). И если выиграете... ну, хотя бы больше 10 килорублей, обязательно отпишитесь – я объясню, почему это произошло. За процент, разумеется =) =)
Но грустить не нужно, потому что есть противоположный принцип: если вероятность некоторого события очень близка к единице, то в отдельно взятом испытании оно практически достоверно произойдёт. Поэтому перед прыжком с парашютом не надо бояться, наоборот – улыбайтесь! Ведь должны сложиться совершенно немыслимые и фантастические обстоятельства, чтобы отказали оба парашюта.
Хотя всё это лирика, поскольку в зависимости от содержания события первый принцип может оказаться весёлым, а второй – грустным; или вообще оба параллельными.
Пожалуй, пока достаточно, на уроке Задачи на классическое определение вероятности мы выжмем максимум из формулы . В заключительной же части этой статьи рассмотрим одну важную теорему:
Сумма вероятностей событий, которые образуют полную группу, равна единице. Грубо говоря, если события образуют полную группу, то со 100%-й вероятностью какое-то из них произойдёт. В самом простом случае полную группу образуют противоположные события, например:
– в результате броска монеты выпадет орёл;
– в результате броска монеты выпадет решка.
По теореме:
Совершенно понятно, что данные события равновозможны и их вероятности одинаковы .
По причине равенства вероятностей равновозможные события часто называют равновероятными. А вот и скороговорка на определение степени опьянения получилась =)
Пример с кубиком: события противоположны, поэтому .
Рассматриваемая теорема удобна тем, что позволяет быстро найти вероятность противоположного события. Так, если известна вероятность того, что выпадет пятёрка, легко вычислить вероятность того, что она не выпадет:
Это гораздо проще, чем суммировать вероятности пяти элементарных исходов. Для элементарных исходов, к слову, данная теорема тоже справедлива:
События , как отмечалось выше, равновозможны – и теперь мы можем сказать, что равновероятны. Вероятность выпадения любой грани кубика равна :
Ну и на закуску колода: поскольку нам известна вероятность того, что будет извлечена трефа, то легко найти вероятность того, что будет извлечена карта другой масти:
Заметьте, что рассмотренные пары событий и не равновероятны, как оно чаще всего и бывает.
В упрощенной версии записи решения вероятность противоположного события стандартно обозначается строчной буквой . Например, если – вероятность того, что стрелок попадёт в цель, то – вероятность того, что он промахнётся.
! В теории вероятностей буквы и нежелательно использовать в каких-то других целях.