Усилителем называется устройство, предназначенное для увеличения мощности входного сигнала. Процесс усиления основан на преобразовании активным элементом (биполярным, полевым транзистором) энергии источника постоянного напряжения в энергию переменного напряжения на нагрузке при изменении сопротивления активного элемента под действием входного сигнала.
Усилители сигналов являются базовыми устройствами для построения сложных аналоговых электронных устройств. В зависимости от того, какой электрод транзистора является общим для входной и выходной цепей, разли-чают три схемы включения для биполярных (БТ) и полевых транзисторов (ПТ) соответственно: с общей базой или общим затвором (ОБ или ОЗ); с общим эмиттером или общим истоком (ОЭ или ОИ); общим коллектором или общим стоком (ОК или ОС).
коэффициент усиления по напряжению Кu = Uвых/Uвх;
коэффициент усиления по току Кi = Iвых/Iвх;
коэффициент усиления по мощности Кр = Рвых/Рвх.
Для многокаскадных усилителей коэффициент усиления определяется произведением коэффициентов усиления отдельных каскадов, выраженных в абсолютных единицах:
(раз) или суммой коэффициентов усиления, выраженных в децибелах:
Входное сопротивление усилителя представляет собой сопротивление между входными зажимами усилителя и определяется отношением входного напряжения ко входному току Zвх = Uвх/Iвх. Характер входного сопротивления зависит от диапазона усиливаемых частот.
Выходное сопротивление определяют между выходными зажимами при отключенном сопротивлении нагрузки Zвых = Uвых/Iвых.
Коэффициент демпфирования – отношение сопротивления нагрузки к выходному сопротивлению усилителя Кд = Rн/Rвых. Значение этого параметра лежит в пределах от 10 до 100.
КПД – отношение выходной мощности, отдаваемой усилителем в нагрузку, к общей мощности, потребляемой от источника питания . Чувствительность – напряжение, которое нужно подать на вход усилителя, чтобы получить на выходе заданную мощность.
Динамический диапазон – отношение наибольшего допустимого значе-ния входного напряжения к его наименьшему допустимому значению
D = Uвх макс/Uвх мин.
Диапазон усиливаемых частот (полоса пропускания) – разность между верхней и нижней граничными частотами Δf = fв – fн, в которой коэффициент уси-ления изменяется по определенному закону с заданной точностью.
Линейные искажения определяются зависимостями параметров транзисторов от частоты и реактивными элементами усилительных устройств. Линейные искажения бывают трех видов: частотные, фазовые и переходные.
57. Линейные и нелинейные искажения усилителей.
Кроме получения необходимого коэффициента усиления сигнала необходимо, чтобы усилитель не изменял его формы. Отклонение формы выходного сигнала от формы входного принято называть искажениями. Искажения бывают двух видов: нелинейные и линейные.
Источником нелинейных искажений является нелинейность вольт-амперных характеристик элементов усилителя. При подаче па вход усилителя напряжения синусоидальной формы из-за нелинейности входной и выходной характеристики транзистора форма входного и выходного токов может отличаться от синусоидальной из-за появления составляющих высших гармоник. Это относится как к синусоидальному входному напряжению, так и ко входному сигналу любой другой формы. Уровень нелинейных искажений характеризуется коэффициентом нелинейных искажений (клир-фактор) усилителя, выраженным в процентах
Kr=((P2+P4+…+Pn)^1/2)/((P1)^1/2)*100%=((U22+U32+…Un2)^1/2)/(U1^1/2)*100%
где P2, P3, Pn – мощности, выделяемые в нагрузке под воздействием 2-й, 3-й, n-й гармонических составляющих напряжения (U2, U3, Un); P1 – мощность в нагрузке, обусловленная основной гармонической составляющей напряжения U1.
При оценке нелинейных искажений в большинстве случаев учитывают только вторую и третью гармоники, поскольку более высокие гармоники имеют малую мощность. Для многокаскадного усилителя общий коэффициент нелинейных искажений принимается равным сумме коэффициентов нелинейных искажений отдельных каскадов
Нелинейные искажения зависят от амплитуды входного сигнала и не свя- заны с его частотой. Для уменьшения искажения формы выходного сигнала входной сигнал должен иметь малую амплитуду. В связи с этим в многокас- кадных усилителях нелинейные искажения в основном возникают в предоко- нечных и выходных каскадах, на входе которых действуют сигналы большой амплитуды.
Линейные искажения определяются зависимостями параметров транзи-сторов от частоты и реактивными элементами усилительных устройств. Линейные искажения бывают трех видов: частотные, фазовые и переходные.
Частотные искажения связаны с несовпадением реальных и идеальных характеристик в рабочем диапазоне частот. Эти искажения зависят лишь от частоты усиливаемого сигнала.
Зависимость коэффициента усиления от частоты входного сигнала К=F(f) принято называть амплитудно-частотной (частотной) характеристикой (АЧХ) рис. 10.5,а.
Идеальная АЧХ параллельна оси частот. Реально, гармонические составляющие входного сигнала усиливаются усилителем неодинаково, поскольку реактивные сопротивления элементов схемы по-разному зависят от частоты. Типичным для АЧХ является наличие так называемой области средних частот, в которой К почти не зависит от частоты и обозначается К0 В диапазоне низких и высоких частот амплитудно-частотная характеристика спадает, имея неравномерность усиления. Частоты усиления, на которых коэффициент усиления уменьшается в 2^1/2 раз или на 3 дБ по сравнению со средней частотой, называют граничными частотами: нижняя fН и верхняя fВ разность частот fВ - fН =∆f называют полосой пропускания.
Частотные искаженияв усилителе всегда сопровождаются наличием сдвига фаз между входным и выходным сигналами, что вызывает появление фазовых искажений. Под фазовыми искажениями подразумевают сдвиги 250 фаз, вызванные реактивными элементами усилителя, а поворот фазы усилительным каскадом не учитывается. Фазовые искажения усилителя оцениваются его фазочастотной характеристикой ϕ=F(f). График фазочастотной характеристики представляет собой зависимость угла сдвига фазы между входным и выходным напряжениями усилителя от частоты (рис. 10.5,б). Фазовые искажения в усилителе отсутствуют, когда фазовый сдвиг линейно зависит от частоты. Идеальной фазочастотной характеристикой является прямая линия, начинающаяся в начале координат (рис. 10.5,б пунктирная линия). На практике амплитудно-частотную и фазочастотную характеристики удобнее строить в логарифмическом масштабе по оси частот. Это удобно тем, что растягивается область нижних и сжимается область верхних частот.
Переходная характеристика выражает зависимость от времени выходного напряжения усилителя, на вход которого подан мгновенный скачок напряжения (рис. 10.7).
Эта характеристика определяет процесс перехода усилителя из одного состояния в другое. Скачкообразное изменение входного напряжения позволяет выяснить реакцию усилителя на это воздействие сразу в двух режимах: переходном и стационарном. Характер переходного процесса в усилителе во многом зависит от наличия реактивных элементов L, C, которые препятствуют мгновенному изменению тока в индуктивности и напряжения на емкости. Напряжение на выходе не может измениться скачкообразно при подаче на вход импульса.
Время, в течение которого фронт нормированной переходной характеристики нарастает от уровня 0,1 до уровня 0,9, называется временем нарастания tнар. Превышение мгновенного значения напряжения над установившимся называют выбросом δ и выражают в процентах. Существует так называемое критическое значение выброса, при котором δ не зависит от числа каскадов усилителя. Неравномерность вершины нормированной переходной характеристики обозначается через Δ, измеряется как и выброс в процентах от стационарного значения и не должна превышать 10 % для усилителей высоко- качественного воспроизведения.
Шумы в электронных схемах
Собственные шумы компонентов электронных схем
Собственные шумы компонентов электронных схем являются их неотъемлемой и основной физической характеристикой: они устанавливают нижнюю границу напряжения шумов электронного прибора. К собственным шумам относятся: тепловые, дробовые и контактные шумы, которые являются непрерывными сигналами с характерными свойствами.
Тепловые шумы возникают в результате теплового движения электронов в веществе. Они возникают во всех элементах, обладающих сопротивлением. Поэтому тепловые шумы в технической литературе называются также шумами сопротивления или джонсоновскими шумами.
Источником теплового шума могут быть компоненты электрической схемы, которые способны рассеивать энергию. Поэтому реактивное сопротивление не является источником теплового шума.
Для исследования тепловой шум может быть представлен в виде стандартного «белого» шума: амплитуда напряжения теплового шума нормальное распределение с параметрами m = 0 и σ= UT, а СПМ теплового шума постоянна во всем диапазоне частот.
Дробовой шум возникает вследствие того, что электрический ток представляет собой движение дискретных зарядов. Конечность заряда приводит к статистическим флуктуациям тока относительно среднего значения, вызываемых случайным характером эмиссии электронов (или дырок), т.е. дробовому шуму. Этот вид шума присутствует как в электронных лампах, так и в транзисторах. В последних дробовой шум обусловлен хаотической диффузией носителей через базу и случайным характером генерации и рекомбинации пар электрон-дырка. В общем случае дробовой шум связан с прохождением тока через потенциальный барьер.
Для дробового шума также применимо представление в виде нормально распределенного «белого» шума, описанного выше. Математическое ожидание дробового шума равно нулю, а среднеквадратическое отклонение определяется эффективным значением тока
Контактные шумы вызываются флуктуацией проводимости (переходного сопротивления) вследствие несовершенства контакта между двумя материалами. Они проявляются всякий раз, когда два проводника соединяются друг с другом, например, в переключателях и контактном реле.
Контактные шумы встречаются в сопротивлениях, транзисторах и диодах из-за несовершенства контактов, микросхемах содержащих множество сплавных между собой мелких частиц.
Этот шум зависит от многих факторов конструкции конкретного сопротивления резистивный материал и в особенности концевые соединения.
В технической литературе контактные шумы часто имеют другие названия. В частности, шумы, возникающие в сопротивлениях, называются «избыточными» шумами, контактные шумы в электронных лампах и транзисторах обычно - «фликкер-шумами».
Спектральная плотность мощность изменяется как величина обратная частоте, вследствие чего эти шумы называют низкочастотными или 1/f шумами, а иногда этот шум называют «розовым».
Контактные шумы являются наиболее существенными источниками шумов в низкочастотных схемах и электрических цепях.
К собственным шумам относятся так же характерные для полупроводниковых элементов - диодов, транзисторов и интегральных схем импульсные шумы.
В отличие от других типов шумов импульсные являются практически неустранимыми, так как обусловлены производственными дефектами и их можно устранить только улучшив процессы производства. Эти шумы вызываются металлическими примесями в переходе полупроводникового прибора. Импульсные шумы являются дискретными непериодическими сигналами и проявляются как резкие всплески уровни выходного напряжения.
Средняя скорость повторения импульсов может изменяться от нескольких сот импульсов в секунду до одного импульса в минуту, однако у любого конкретного устройства амплитуда импульсных шумов фиксирована, так как она является функцией параметров дефекта перехода. Длительность шумовых импульсов колеблется от микросекунд до секунд. Обычно эта амплитуда в 2 - 100 раз превышает амплитуду тепловых шумов.
Спектральная плотность мощности импульсных шумов имеет зависимость вида 1/f2. Поскольку этот шум представляет собой явление, связанное с наличием тока, напряжение импульсных шумов будет наибольшим в высокоомной цепи, такой, как входная цепь операционного усилителя.
Не ограничиваясь рассмотрением только этих основных типов шумов, в общем случай, суммарное напряжение шума для электронныой схемы можно записать в виде
UшƩ=(Uш12+Uш22+…Uшn2)^1/2