Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Особенности работы ламп на СВЧ




На СВЧ время пролета электронов соизмеримо с периодом электрических коле­баний, управляющих электронным потоком. Поэтому пролет электронов проис­ходит в условиях изменяющегося электрического поля. Такой режим работы на­зывают динамическим. Для учета влияния времени пролета электронов на токи электродов применяют понятие наведенного тока.

Рассмотрим систему из двух плоских электродов, между которыми перемещает­ся со скоростью υ тонкий электронный слой с общим зарядом -q (рис. 10.12).

Вследствие явления электростатической индукции на электродах наводятся по­ложительные заряды q1, и q2, сумма которых равна отрицательному заряду элект­ронов в электронном слое:

(10.34)

Величина наведенного заряда зависит от расстояния между электронным слоем и электродом:

(10.35)

Перемещение электронного слоя сопровождается изменением величины наведен­ных зарядов, что ведет к возникновению во внешней цепи, соединяющей электро­ды, наведенного тока:

(10.36)

Учитывая (10.35), получаем

(10.37)

Наведенный ток возникает, как только электронный слой появляется в проме­жутке между электродами, и исчезает, когда электронный слой достигает вто­рого электрода. Длительность импульса наведенного тока равна времени про­лета электронов. Если скорость движения электронов постоянна, то импульс тока прямоугольный; при линейной зависимости скорости от времени он будет тре­угольным.

В реальных условиях в пространстве между электродами существует некоторое произвольное распределение плотности зарядов ρ (х, t), изменяющееся во време­ни. В этом случае наведенный ток, создаваемый электронным слоем с зарядом dq, будет равен

(10.38)

Учтем, что dq = S*ρ (x, t) dx, тогда

(10.39)

где S — площадь электродов.

Создаваемый всеми электронными слоями наведенный ток может быть найден путем интегрирования по всему промежутку между электродами:

(10.40)

Подынтегральное выражение есть значение тока проводимости в сечении х в мо­мент времени t. Этот ток обусловлен переносом (конвекцией) электронов. Поэто­му его называют конвекционным током:

(10.41)

Подставив (10.41) в (10.40), получим

(10.42)

Наведенный ток в момент времени t равен усредненному по длине промежутка значению конвекционного тока в этот же момент времени. В частном случае, ког­да время пролета электронов много меньше периода переменного напряжения, можно считать, что iконв (x, t)практически не зависит от координаты, и его можно вынести за знак интеграла. Тогда iнав (t) = iконв (x, t), то есть наведенный ток равен конвекционному, что справедливо для области низких частот. На СВЧ наведен­ный ток не равен конвекционному току.

Чтобы лучше представить себе возникновение наведенного тока, рассмотрим слу­чай, когда на анод диода подается импульс напряжения прямоугольной формы, длительность которого соизмерима со временем пролета (рис. 10.13). В момент времени t1 электроны начинают двигаться от катода, и возникает наведенный ток. Двигаясь в ускоряющем поле, они с течением времени заполняют разрядный про­межуток. Благодаря этому наведенный ток, определяемый соотношением (10.40), становится больше и скорость его нарастания увеличивается. В момент времени t2 электроны достигают анода, и все пространство между катодом и анодом оказы­вается заполненным электронами. Наведенный ток становится максимальным. В момент времени t3 анодное напряжение становится равным нулю, поступление новых электронов от катода прекращается, а электроны, заполняющие разрядный промежуток, продолжают двигаться по инерции к аноду. С течением времени число электронов в разрядном промежутке уменьшается и соответственно умень­шается анодный ток. В момент времени t4 в разрядном промежутке не остается электронов и наведенный ток становится равным нулю.

Из рассмотренного следует, что импульс наведенного тока оказывается растяну­тым во времени по сравнению с импульсом напряжения и отстает от него. Если в момент t3 подать на анод отрицательное напряжение, то некоторая часть электро­нов по инерции долетит до анода, а другая часть затормозится настолько, что ос­тановится и станет возвращаться на катод. Аналогичные явления происходят при подаче на анод синусоидального напряжения, но при этом интервал между t1 и t2 увеличивается, так как электроны перемещаются в изменяющемся электрическом поле, на что требуется больше времени для достижения анода, в результате этого максимум тока наступает несколько позже. После достижения максимума напря­жения ток начнет уменьшаться.

Похожие явления имеют место при перемещении электронов в триоде (рис. 10.14). Пусть на сетку подано напряжение запирания и положительные прямоугольные импульсы. При этом напряжение на сетке остается все время отрицательным, то есть электроны на сетку не попадают. В момент t1, лампа отпирается, электроны начинают заполнять промежуток между катодом и сеткой, и в цепи сетки появля­ется наведенный ток i1. Такой же ток, но противоположного направления, возни­кает и в цепи катода.

В момент времени t2 промежуток катод—сетка полностью заполнен электронами, рост тока i1, прекращается. Электроны на сетку не попадают, пролетают через про­светы сетки и оказываются в промежутке между сеткой и анодом. Удаляющийся от сетки поток электронов создает в цепи сетки наведенный ток i2, противопо­ложный по направлению току i1. Одновременно индуцируется ток в цепи анода. В момент t3 электроны достигают анода. В интервале между t3 и t4 токи i1, и i2 по­стоянны и противоположно направлены, поэтому ток сетки равен нулю. В момент t4 лампа запирается, и электроны перестают уходить от катода, но электроны, за­полнившие междуэлектродные промежутки, продолжают по инерции движение. В момент t5, промежуток между катодом и сеткой очищается от электронов и ток i1 становится равным нулю. В интервале между t5 и t6 очищается от электронов промежуток между сеткой и анодом, и в момент t6 ток i2 становится равным нулю.

Таким образом, в цепи сетки возникают два импульса наведенного тока, противопо­ложные по направлению. Результирующий ток сетки определяется суммированием этих импульсов. При этом следует иметь в виду, что электроны на сетку не попа­дают. При подаче на сетку синусоидального напряжения происходят аналогич­ные процессы с той лишь разницей, что нарастание и спад наведенных токов про­исходят более медленно, а импульсы токов i1 и i2 оказываются более длительными.

При работе на СВЧ за время пролета изменяется фазовый угол переменного на­пряжения. Изменение фазового угла за время пролета называется углом пролета:

(10.43)

где ω — угловая частота переменного напряжения.

Чем выше частота ω, тем больше фазовый угол άпр, тем меньше амплитуда наве­денного анодного тока и тем больше амплитуда наведенного сеточного тока. Сле­довательно, с ростом частоты уменьшается коэффициент усиления мощности.

Пролетные клистроны

На СВЧ эффективность электронных ламп снижается вследствие конечного вре­мени пролета разрядного промежутка. В клистронах значительное время пролета не только не вредно, но и необходимо для нормальной работы прибора. Схема устройства и включения пролетного клистрона приведена на рис. 10.15, а.

Пролетный клистрон состоит из катода, объемного входного резонатора Р1 в ко­торый с помощью петли связи вводится входной сигнал Рвк, и расположенного на расстоянии d от него выходного резонатора Р2. Оба резонатора соединены с кол­лектором и заземлены. На катод подается отрицательное напряжение. Под дей­ствием электрического поля между катодом и анодом электроны, покинувшие катод, ускоряются и влетают во входной резонатор с большой скоростью υ0. Между сетками резонатора Р1 существует переменное электрическое поле, изменяющее скорость электронов. В положительный полупериод переменного напряжения электроны ускоряются, в отрицательный полупериод замедляются. Модулиро­ванные по скорости электроны влетают в пространство дрейфа между резонаторами Р1 и Р2, в котором отсутствует электрическое поле. В этом пространстве элек­троны летят по инерции с постоянной скоростью. Электроны, движущиеся с более высокой скоростью, догоняют электроны, скорость которых меньше. В результа­те образуются электронные сгустки, что отражено на рис. 10.15, б.

Электронные сгустки поступают в резонатор Р2, настроенный на частоту их сле­дования, создают в нем импульсы наведенного тока и возбуждают колебания с амплитудой, которая больше амплитуды колебаний во входном резонаторе Ри то есть в клистроне происходит усиление мощности электрических колебаний. Про­летевшие через резонатор электроны попадают на коллектор и разогревают его. Двухрезонаторный клистрон может усиливать мощность в десятки раз. Однако его КПД, представляющий собой отношение колебательной мощности в резона­торе Р2 к мощности постоянного тока источника питания, не превышает 20 %, хотя предельное теоретическое значение составляет 58 %. Это объясняется следующи­ми причинами. Во-первых, электроны вылетают из катода с различной началь­ной скоростью и, пролетая через модулятор в один и тот же момент времени, имеют неодинаковую скорость, вследствие чего они группируются недостаточно плотно. Во-вторых, между электронами действуют силы взаимного отталкивания, из-за чего при пролете через пространство дрейфа плотность электронного сгуст­ка дополнительно уменьшается. Кроме того, некоторая часть электронов вообще не группируется в сгустки, то есть не участвует в полезной работе, а некоторые из электронов оседают на сетках резонаторов.

В настоящее время двухрезонаторные клистроны имеют ограниченное примене­ние. Введение дополнительных промежуточных резонаторов между входным и выходным резонаторами позволило повысить коэффициент усиления мощности и КПД. Современные мощные клистроны содержат от 3 до 7 резонаторов. Прин­цип устройства четырехрезонаторного клистрона показан на рис. 10.16.

 

В первом резонаторе происходит модуляция электронов по скорости. Электрон­ный поток, влетающий во второй резонатор, возбуждает в нем высокочастотное напряжение, под действием которого скорость электронов на выходе из зазора первого промежуточного резонатора будет иметь более высокую переменную со­ставляющую, чем на входе в зазор, и группирование в пространстве дрейфа меж­ду вторым и третьим резонаторами будет проходить более интенсивно. Таков&же роль последующих резонаторов. В результате в выходной резонатор влетают сгу­стки электронов с более высокой плотностью, благодаря чему повышается КПД, который для многорезонаторных пролетных клистронов достигает 50 %, а коэф­фициент усиления мощности — 90 дБ при мощности, доходящей до 100 кВт в ре­жиме непрерывных колебаний и до 50 МВт в импульсном режиме. Достижение таких показателей обеспечивается не только введением промежуточных резона­торов, но и рядом усовершенствований, внесенных в конструкцию клистрона.

Зазоры резонаторов мощных клистронов не имеют сеток. Это в некоторой степе­ни ухудшает взаимодействие электронного потока с электромагнитным полем в зазорах, но зато практически исключается оседание электронов и нагрев сеток. Чтобы повысить взаимодействие потока электронов с полем в зазоре, увеличива­ют ускоряющее постоянное напряжение и постоянный ток луча.

В многорезонаторных клистронах промежуточные резонаторы расстроены отно­сительно частоты сигнала, благодаря чему формирование сгустка электронов про­исходит так, что в нем участвуют «бесполезные» ранее электроны, дающие рост КПД. Одновременно расстройка промежуточных резонаторов позволяет расши­рить полосу пропускания.

В мощных клистронах электронные потоки необходимо фокусировать, чтобы диаметр потока не увеличивался вследствие расталкивания электронов. С этой целью обычно используется магнитная фокусировка при помощи отдельных катушек индуктивности, помещаемых в промежутках между резонаторами. Поле, создаваемое этими катушками, препятствует движению электронов перпенди­кулярно оси клистрона, закручивая их, и электроны движутся по направлению к аноду по спиральным траекториям.

Отражательные клистроны

Отражательные клистроны применяют для генерирования СВЧ-колебаний. Они содержат только один объемный резонатор (рис. 10.17, а). Ускоренные на участ­ке между катодом и первой сеткой С1 электроны влетают в резонатор и возбужда­ют в нем импульс наведенного тока. В резонаторе возникают колебания, создаю­щие между его сетками переменное электрическое поле. Это поле модулирует электронный поток по скорости, и электроны влетают в тормозящее поле между второй сеткой С2 и отражателем О с различной скоростью. Электроны в этом поле тормозятся, останавливаются и ускоренно возвращаются к резонатору. Чем боль­ше скорость электрона, тем дальше углубляется он в тормозящее поле и больше времени находится в этом поле. В результате электроны, пролетевшие через резо­натор в положительные полупериоды переменного электрического поля, могут вернуться обратно одновременно с электронами, пролетевшими через резона­тор позднее, во время отрицательного полупериода, что наглядно показано на рис. 10.17, б. Электроны, пролетевшие через резонатор в интервале времени от t1 до t3, возвращаются назад в момент t9.

Электронный сгусток может вернуться в резонатор в различные моменты време­ни в зависимости от напряжений Е1 и Е2. При возвращении в резонатор электрон­ные сгустки отдают ему энергию только тогда, когда они попадают в тормозящее поле. Наибольшую энергию они отдают в том случае, если возвращаются в мо­мент, когда напряженность тормозящего поля в резонаторе максимальна. Возвра­щение энергии в резонатор поддерживает существующие в нем колебания. Чем больше величина возвращаемой энергии, тем больше мощность колебаний в ре­зонаторе. Если же отдаваемая электронами энергия слишком мала, то колебания не будут поддерживаться и затухнут.

Время пролета электронов в пространстве дрейфа отсчитывается от момента t2, в который в пространство дрейфа влетает электрон с группирующимися вокруг него остальными электронами, до момента времени возвращение сгустка электронов в резонатор. На рис. 10.17, б это время равно (1+3/4) T. Изменяя отрица­тельное напряжение на отражателе, можно изменять время пролета, но при этом возвращение электронов должно происходить в тормозящие полупериоды коле­баний в резонаторе. Соответственно, существует несколько зон генерации. Если отрицательное напряжение на отражателе очень большое, то электроны, прохо­дящие через резонатор в интервале t1-t3, вернутся назад в интервале t4-t6 (нуле­вая зона генерации), причем наибольшую энергию они вернут в резонатор при возвращении в момент t5. При снижении отрицательного напряжения на отража­теле электроны возвращаются назад позже. Если возвращение происходит в ин­тервале te-t8, то колебания вообще не возникают. При возвращении в интервале t8-t10 колебания вновь возникают (первая зона генерации), мощность этих коле­баний достигает максимума при возвращении в момент t9. Чем меньше по абсо­лютной величине отрицательное напряжение на отражателе, тем больше время пролета электронов и, соответственно, выше номер зоны генерации. Наибольшая мощность колебаний получается в нулевой зоне.

Меняя напряжение на отражателе, можно изменять частоту генерируемых ко­лебаний. При увеличении по абсолютному значению отрицательного напря­жения на отражателе электронные сгустки возвращаются в резонатор несколько быстрее, и частота колебаний возрастает. При уменьшении этого напряжения по абсолютной величине электронные сгустки возвращаются в резонатор с за­паздыванием, и частота колебаний уменьшается. При изменении частоты ко­лебаний уменьшается мощность генерируемых колебаний (рис. 10.18). Поэтому такую расстройку принято ограничивать условием снижения мощности не более чем на 50 %.

У отражательных клистронов КПД не превышает 5 %, вследствие чего они не ис­пользуются для получения больших мощностей, а применяются в качестве гете­родинов СВЧ-приемников, в измерительной аппаратуре, радиорелейной, радио­навигационной и телевизионной аппаратуре. Полезная мощность не превышает сотых и десятых долей ватта. В последние годы отражательные клистроны вытес­няются полупроводниковыми генераторами СВЧ.

Лампы бегущей волны

Основным недостатком клистронов является сравнительно узкая полоса про­пускания для усилителей и малый диапазон перестройки частоты для генера­торов, что обусловлено необходимостью применять высокодобротные резонато­ры для эффективного торможения электронных сгустков при кратковременном взаимодействии электронного потока с СВЧ-полем в пространстве между сет­ками резонатора. В лампах бегущей волны (ЛБВ) взаимодействие электронно­го потока с СВЧ-полем происходит на большом участке пути, то есть носит длительный характер, благодаря чему повышается эффективность усиления колебаний. При длительном взаимодействии электронного потока с СВЧ-полем отпадает необходимость в высокодобротных резонаторах, поэтому полоса уси­ливаемых частот получается широкой. Коэффициент перекрытия по частоте составляет 2-4.

Для обеспечения длительного взаимодействия электронного потока с СВЧ-полем необходимо, чтобы скорость электронного потока была соизмерима со скоростью распространения электромагнитной волны. Поскольку увеличить скорость пото­ка электронов до величины скорости света не представляется возможным, прибе­гают к замедляющим системам, снижающим скорость распространения электро­магнитной волны.

Устройство ЛБВ со спиральной замедляющей системой показано на рис. 10.19.

Электронная пушка 1 формирует тонкий пучок электронов, который влетает в замедляющую систему, выполненную в виде проволочной спирали. Эта спираль является внутренним проводом коаксиальной линии. Наружным проводом яв­ляется трубка 3. С помощью фокусирующей катушки 4 обеспечивается необходимое поперечное сечение электронного луча на всем пути вдоль замедляющей системы. Пройдя вдоль замедляющей системы, электроны попадают на коллек­тор 5. Усиливаемые колебания подводят к ЛБВ с помощью входного волновода б, в котором находится приемный штырь спирали 7. На другом конце спирали име­ется штырь 8, возбуждающий колебания в выходном волноводе 9. Плунжеры 10 служат для согласования волноводов со спиралью, то есть получения в спирали бегущей волны. Спираль содержит десятки или сотни витков и обеспечивает по­лучение фазовой скорости электромагнитной волны υф порядка 30 000 км/с, чтосоставляет 0,1 от скорости света. В сантиметровом диапазоне волн длина спира­ли составляет 10-30 см, а ее диаметр — несколько миллиметров. На рис. 10.20, а показана картина электрического поля внутри спирали в некоторый конкретный момент времени, а на рис. 10.20, б — распределение потенциала вдоль спирали. Сама спираль показана в разрезе, а знаками «+» и «-» показан знак потенциала. Силовые линии, начинаясь на витках с более высоким потенциалом, заканчива­ются на витках с более низким потенциалом.

Вдоль спирали чередуются участки ускоряющего и тормозящего поля. Так как электромагнитная волна бежит вдоль спирали, то поле вращается вокруг ее оси и перемещается вдоль оси с фазовой скоростью υф. Электроны влетают в за­медляющую систему со скоростью υ0, которая больше скорости υф. В результа­те взаимодействия электронного луча с электрическим полем бегущей волны происходит модуляция электронов по скорости и группирование их в сгустки. Если электроны влетают в замедляющую систему в момент, когда поле явля­ется тормозящим, то они тормозятся и далее продолжают двигаться в пределах того же участка к концу спирали, группируясь в более плотные сгустки. По­степенно уменьшая скорость, они все время отдают энергию полю, усиливая бегущую волну. Нарастание амплитуды СВЧ-гголя вдоль оси замедляющейсистемы происходит по экспоненциальному закону. Если электроны влетают в замедляющую систему в момент, когда поле является ускоряющим, то они уве­личивают свою скорость и, обгоняя поле, постепенно переходят в участок тормо­зящего поля. В результате этих процессов в выходном волноводе возбуждаются колебания, мощность которых многократно превышает мощность, поступающую от входного волновода. При этом энергия, потребляемая от источника питания, затрачивается на ускорение электронов электронной пушкой, а затем при тормо­жении электронов в замедляющей системе эта энергия отдается бегущей волне электромагнитного поля.

КПД ЛБВ без принятия специальных мер не превышает 20 %. Существует не­сколько способов повышения КПД. Наиболее простым является применение спи­рали с переменным шагом, что обеспечивает постепенное снижение фазовой ско­рости бегущей электромагнитной волны, это позволяет выдержать условие v > v$ на большей длине спирали. Дело в том, что по мере продвижения вдоль оси системы скорость электронов v снижается, скорости электронов и волны вырав­ниваются, электроны начинают переходить из тормозящего полупериода бегущей волны в ускоряющий и отбор энергии от электронов прекращается. Если же фазовая скорость волны вдоль системы снижается, то возрастает длительность взаимодействия сгустков электронов с электрическим полем, что и обусловлива­ет повышение КПД.

Второй способ повышения КПД основан на отборе энергии от сгустка непо­средственно перед его попаданием на коллектор. С этой целью напряжение на кол­лекторе снижают по сравнению с ускоряющим напряжением. Благодаря этому между замедляющей системой и коллектором создается электростатическое тор­мозящее поле, попадая в которое, электроны замедляются, отдавая часть своей энергии источнику коллекторного напряжения, и лишь оставшаяся часть энер­гии выделяется в виде теплоты при ударе о коллектор. Применение этих мер позволяет повысить КПД ЛБВ до 50 %.

ЛБВ нашли широкое применение в радиолокационных системах, системах кос­мической и тропосферной связи, работающих на частотах, измеряемых десятка­ми гигагерц с полезной мощностью до сотен киловатт. Многие ЛБВ способны отдавать в импульсе мощность более 10 МВт.

Принцип работы ЛБВ послужил основой для разработки ламп обратной волны (ЛОВ), особенностью которых является то, что направление движения электро­нов противоположно движению волны в замедляющей системе. Ввод сигнала в ЛОВ осуществляется у коллекторного конца замедляющей системы, а вывод — около катода. Усиление в такой лампе получается лишь в узкой полосе частоты, причем положение этой полосы в диапазоне частот зависит от ускоряющего по­стоянного напряжения. Значительно чаще ЛОВ применяют для генерирования колебаний СВЧ. Такие генераторы применяют в качестве гетеродинов радиоло­кационных и связных радиоприемников, в задающих генераторах передатчиков РЛС с быстрой перестройкой частоты и широкополосных ЧМ-системах переда­чи данных. В настоящее время ЛОВ в диапазоне частот до 10-12 ГГц заменяются полупроводниковыми генераторами СВЧ, а разработка новых ЛОВ ведется толь­ко для субмиллиметрового диапазона.





Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 1482 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Своим успехом я обязана тому, что никогда не оправдывалась и не принимала оправданий от других. © Флоренс Найтингейл
==> читать все изречения...

2378 - | 2186 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.