Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Принципиальная электрическая схема выходного оконечного каскада приведена на рисунке 2




Рис. 2 Принципиальная электрическая схема выходного оконечного каскада

 

Выбор режима работы.

Выбор режима «А» несет в себе небольшие нелинейные искажения по сравнению с другими режимами работы, хотя КПД усилителя мощности в этом режиме небольшой примерно 30-45 %. В то время как режим «В» обеспечивает чрезмерно большие нелинейные искажения, вызванные наличием нелинейного участка в начале входной вольтамперной характеристики. КПД режима «В» составляет 50-60 %.

Расчет будем вести в режиме «А».


1. Определяем амплитудные значения тока и напряжения на нагрузке:

(A)

(B)

2. Определим максимально допустимую мощность рассеивания на транзисторах VT12, VT13:

(Вт),

где ηА – КПД, равный 35 - 40%. Поскольку в режиме «А» предельный КПД составляет 50%, а реальный не выше 35 - 40%.

3. Определим UКЭ12=UКЭ13:

(В),

где U0 - запас, исключающий попадание рабочей точки в область насыщения, для различных типов транзисторов колеблется в пределах 0,5 - 3 В, для маломощных транзисторов можно выбирать в пределах 1-2 В;

КПΣ - коэффициент передачи всего усилителя мощности. Практически значение КПΣ находится в пределах 0,7-0,9, в зависимости от величины нагрузки. При нагрузках ниже 5-10 Ом следует принимать меньшее значение.

Принимаем U0 = (В), КПΣ = и определяем UКЭ12=UКЭ13.

4. Определим величину напряжения источника питания

 

ЕК = 2·UКЭ12,13 + 2·Uзащ= 2·UКЭ12,13 + 2·UR43 = (В),

где Uзащ – падение напряжения на резисторе защиты (R43), можно принять в пределах 0,8 – 1 В.

Принимаем ЕК = (В), в соответствии со стандартным рядом источников питания.

Пересчитываем значения напряжений коллектор-эмиттер транзисторов 12 и 13:

(В)

5. Выбираем из справочника транзисторы VT13, VT12, соответствующие по мощности, току покоя и по верхней граничной частоте полосы пропускания, основные характеристики сводим в таблицу вида:

  Модель Тип P, Вт Uкэ доп, В Ikmax, A βmin fгр, МГц Cк, пФ Iко, мА
VT12                  
VT13                  

 

Необходимо учитывать, что у выбираемых в качестве выходных транзисторов допустимое напряжение Uк доп должно соответствовать неравенству .

6. Определяем токи покоя и токи базы транзисторов VT12, VT13:

I п 12 = 0,5·IНМАХ + IН.У. (А),

где IН.У.- неуправляемая часть тока покоя, определяемая наличием теплового тока коллектора IK0 (определяется из справочных данных).

(мА),

(А),

(А),

(А);

 

7. Определим значение резистора защитыRз = R43, Значение резистора защиты Rз должно быть достаточно большим, чтобы ограничить на допустимом уровне величину тока через транзисторы VT12 и VT13 и в то же время снижений коэффициента полезного действия при введении Rз должно быть незначительным:

(Ом),

где значение Uбэ12,13 дано в техническом задании.

Значение резистора Rз=R43 принимаем в соответствии с рядом Е24.

 

8. Определяем ток покоя транзисторов VT10:

(А)

9. Определяем постоянное напряжение UКЭ10,11:

(В)

Определим мощность, рассеиваемую на транзисторах VT10, VT11:

PК10,11 = UКЭ10,11·Iп10 (Вт)

10. Выбираем из справочника транзисторы VT10, VT11, соответствующие по мощности, току покоя и по верхней граничной частоте полосы пропускания, основные характеристики сводим в таблицу вида:

  Модель Тип P, Вт Uкэ доп, В Ikmax, A βmin fгр, МГц Cк, пФ Iко, мА
VT10                  
VT11                  

 

 

11. Определим сквозной ток через транзисторы VT10, VT11:

 

(А)

12. Определим токи покоя и токи базы транзисторов VT10, VT11

(А);

(А);

(А)

13. Определим ток покоя транзистора VT9:

Для обеспечения максимальных усилительных свойств транзистора VT9, можно принять значение I п9 =0,005А.

14. Определим напряжение на резисторе R36:

(В)

15. Определим напряжение на участке коллектор-эмиттер транзистора VT9, при этом значение Uбэ можно принять равным 0,7 В для всех остальных транзисторов в данном устройстве:

(В)

16. Определим мощность, рассеиваемую на коллекторе транзистора VT9:

(Вт)

17. Выбираем из справочника транзистор VT9, соответствующий по мощности, току покоя и по верхней граничной частоте полосы пропускания, основные характеристики сводим в таблицу вида:

  Модель Тип P, Вт Uкэ доп, В Ikmax, A βmin fгр, МГц Cк, пФ Iко, мА
VT9                  

 

18. Определим сквозной ток и ток базы транзистора VT9

(А)

(А)

19. Выбираем ток делителя . Пусть (А).

20. Определим значения сопротивлений в схеме и выберем резисторы в соответствии с рядом Е24:

(А)

(Ом),

(В)

 

(А)

Пересчитаем значение сопротивления R43:

(Ом),

(В)

(А)

(Ом),

 

(В)

(А)

(Ом)

(В)

 

(А)

(Ом),

(В)

(В)

(В)

 

(А)

(Ом)

(В)

 

(В)

(В)

 

(А)

(В)

 

(Ом),

принимаем R33<R34

Пересчитываем значения сопротивления резисторов в соответствии с рядом Е24: R33+R34 = (Ом)

(А)

(Ом),

(В)

 

(А)

(Ом),

принимаем R37<R41

Пересчитываем значения сопротивления резисторов в соответствии с рядом Е24: R37+R41= (Ом)

21. Определим коэффициент передачи повторителя на транзисторах VT10÷VT13:

22. Проверим правильность выбранного значения UКЭ9 :

23. Определим коэффициент усиления предварительного каскада:

;

где rб9 - объемное сопротивление базы, можно принять в пределах 200-400 Ом;

rЭ9 - сопротивление эмиттерного перехода, определяется следующим образом:

(Ом);

RВХ.П – входное сопротивление выходного каскада в целом, определяется:

RВХ.П = 0,5·b10·b12·RН (Ом);

- эквивалентное сопротивление предварительного каскада, определяется:

(Ом)

24. Определим коэффициент усиления каскада в целом:

 

КУМ = К·КП

25. Охватим каскад глубокой отрицательной параллельной обратной связью по напряжению.

Глубина обратной связи определяется как:

где: К f0 - исходный коэффициент нелинейных искажений, равный 5%,

Кf - заданный коэффициент нелинейных искажений.

Входное сопротивление транзистора VT9 определяется следующим образом:

Rвх.VT9=rб9+rэ9∙(1+β9)

Входное сопротивление выходного каскада без ООС определяется как:

RВХ.У.М = RВХ.VT9. || R32 || R37

Т.к. RВХ У.М.→R31 принимаем R31 равным входному сопротивлению выходного каскада, R31 = (Ом) в соответствии с рядом Е24.

Определяем эквивалентное сопротивление:

RЭКВ = RВХ.У.М || R31 (Ом)

Определяем сопротивление R38:

(Ом),

Из полученного выражения следует, что:

Пересчитаем значение глубины обратной связи:

F= 1+βэкв·КУМ

Определим коэффициент усиления выходного каскада с ООС:

При этом необходимо пересчить входное сопротивление усилителя мощности:

(Ом)

26. Определим входное напряжение усилителя мощности.

(В)

27. Определим значение емкости конденсатора фильтра и выберем конденсатор в соответствии с рядом Е24:

(мкФ)

28. Определим значение емкости конденсатора С27 и выберем конденсатор в соответствии с рядом Е24:

(мкФ)

29. Определим значение емкости конденсатора С28 и выберем конденсатор в соответствии с рядом Е24:

(мкФ)

30. Определим значение емкости в цепи компенсации С30 и выберем конденсатор в соответствии с рядом Е24:

(мкФ)






Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 499 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент может не знать в двух случаях: не знал, или забыл. © Неизвестно
==> читать все изречения...

2780 - | 2342 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.