Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Интегрирование степенных рядов




Если некоторая функция f(x) определяется степенным рядом: , то интеграл от этой функции можно записать в виде ряда:

 

 

Дифференцирование степенных рядов.

 

Производная функции, которая определяется степенным рядом, находится по формуле:

Сложение, вычитание, умножение и деление степенных рядов.

 

Сложение и вычитание степенных рядов сводится к соответствующим операциям с их членами:

 

Произведение двух степенных рядов выражается формулой:

 

Коэффициенты сi находятся по формуле:

 

Деление двух степенных рядов выражается формулой:

Для определения коэффициентов qn рассматриваем произведение , полученное из записанного выше равенства и решаем систему уравнений:

 

 

Разложение функций в степенные ряды.

 

Разложение функций в степенной ряд имеет большое значение для решения различных задач исследования функций, дифференцирования, интегрирования, решения дифференциальных уравнений, вычисления пределов, вычисления приближенных значений функции.

Возможны различные способы разложения функции в степенной ряд. Такие способы как разложение при помощи рядов Тейлора и Маклорена были рассмотрены ранее. (См. Формула Тейлора.)

Существует также способ разложения в степенной ряд при помощи алгебраического деления. Это – самый простой способ разложения, однако, пригоден он только для разложения в ряд алгебраических дробей.

 

Пример. Разложить в ряд функцию .

Суть метода алгебраического деления состоит в применении общего правила деления многочленов:

 

1 1 - x

1 – x 1 + x + x2 + x3 + …

x

x – x2

x2

x2 – x3

x3

……….

 

 

Если применить к той же функции формулу Маклорена

,

то получаем:

……………………………….

Итого, получаем:

 

Рассмотрим способ разложения функции в ряд при помощи интегрирования.

 

С помощью интегрирования можно разлагать в ряд такую функцию, для которой известно или может быть легко найдено разложение в ряд ее производной.

Находим дифференциал функции и интегрируем его в пределах от 0 до х.

 

Пример. Разложить в ряд функцию

Разложение в ряд этой функции по формуле Маклорена было рассмотрено выше.

(См. Функция y = ln(1 + x).) Теперь решим эту задачу при помощи интегрирования.

 

При получаем по приведенной выше формуле:

Разложение в ряд функции может быть легко найдено способом алгебраического деления аналогично рассмотренному выше примеру.

 

Тогда получаем:

Окончательно получим:

 

 

Пример. Разложить в степенной ряд функцию .

Применим разложение в ряд с помощью интегрирования.

Подинтегральная функция может быть разложена в ряд методом алгебраического деления:

1 1 + x2

1 + x2 1 – x2 + x4- …

- x2

- x2 – x4

x4

x4 + x6

………….

 

Тогда

Окончательно получаем:

 

 





Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 775 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если вы думаете, что на что-то способны, вы правы; если думаете, что у вас ничего не получится - вы тоже правы. © Генри Форд
==> читать все изречения...

2260 - | 2183 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.