Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Смешанное произведение векторов и его свойства




Векторы. Действия над векторами.

Вектором наз. упорядоченная совокупность чисел Х ={X1,X2,...Xn} вектор дан в n-мерном пространстве. Т(X1,X2,X3). n=1,2,3. Геометрический вектор - направленный отрезок. | AB |=| a | - длинна. 2 вектора наз. коллинеарными, если они лежат на 1 прямой или ||-ных прямых. Векторы наз. компланарными, если они лежат в 1-ой плоскости или в ||-ных плоскостях. 2 вектора равны, когда они коллинеарны, сонаправленны, и имеют одинак-ую длинну.

1.умножение на число: произведение вектора А на число l наз. такой вектор В, который обладает след. св-ми: а) А || В. б) l>0, то А ­­ В, l<0, то А ­¯ В. в)l>1, то А < В,)l<1, то А > В. 2. Разделить вектор на число n значит умножить его на число, обратное n: а /n= a *(1/n).

3.Суммой неск-их векторов а и в наз. соединяющий начало 1-го и конец последнего вектора. 4. Разностью векторов а и в наз-ся вектор c, который, будучи сложенным с вектором в даст вектор а.

 

Декартова прямоугольная система координат. Базис.

Базисом на плоскости называется совокупность фиксированной точки и 2х неколлинеарных векторов, проведенных к ней.

Базисом в пространстве наз. совокупность фиксированной точки в пространстве и 3х некомпланарных векторов.

 

Любой вектор на плоскости может быть разложен по векторам базиса на плоскости. Любой вектор в пространстве может быть разложен по векторам базиса в пространстве.

ОС = OA + OB, OA =x* i, OB =j*y, OC =x i +y j. Числа х,у наз-ся координатами вектора ОС в данном базисе

 

 

 

Действия над векторами.

а1 i +y1 j +z1 k; b2 i +y2 j +z2 k

l* a =l(х1 i +y1 j +z1 k)= l(х1) i +l (y1) j +l(z1) k

a ± b =(x1±x2) i +(y1±y2) j +(z1±z2) k

ab =x1x2 ii +y1x2 ij +x2z1 ki +x1y2 ij +y1y2 jj + z1y2 kj +x1z1 ik +y1z2 jk +z1z2 kk =x1x2+y1y2+z1z2

ii =1; ij =0; и т.д.

скалярное произведение 2х векторов равно сумме произведений соответствующих координат этих векторов.

аа =x2+y2+z2=| a |2 a {x,y,z}, aa =| a |*| a |, то a 2=| a| 2

ab =|a|*|b|*cosj

а) ав =0,<=> а ^ в, x1x2+y1y2+z1z2=0

б) а || в - коллинеарны, если, x1/x2=y1/y2=z1/z2

 

Скалярное произведение векторов и его свойства.

-(“skala”-шкала) 2х векторов а и в наз. число, равное произведению длин этих векторов на cos угла между ними. (а, в)- скалярное произведение. а * в =| а |*| в |*cosj, j=p/2, cosp/2=0, a^b=> ab =0. Равенство “0” скаляргного произведения необходимое и достаточное условие их перпендикулярности (ортогональности).

 

Векторное произведение 2х векторов.

левая ----- правая

Тройка векторов а, в, с наз. правоориентированной (правой), если с конца 3го вектора с кратчайший поворот от 1го ко 2му вектору мы будем видеть против час. стрелки. Если кратчайший поворот от 1го ко 2му по час. стрелки - левая. Векторным произведением 2х векторов а и в наз. такой вектор с, который удовлетворяет условиям: 1. | c |=| a |*| b |*sinj. 2. c ^ a и c ^ b. 3. тройка а, в, с -правая.

 

Смешанное произведение векторов и его свойства.

Смешанным произведением векторов наз. векторно-скалярное произведение, являющееся числом: a * b * c =[ a * b ]* c = a *[ b * c ], где

a ={ax,ay,az}

b ={bx,by,bz}

c ={cx,cy,cz}

Св-ва:
1. При перестановке 2х сомножителей:

a * b * c =- b * c * a

2. не меняется при перестановке циклических сомножителей:

a * b * c = c * a * b = b * c * a

3.а)(Геометрич. смысл) необходимым и достаточным условием компланарности 3х векторов явл. равенство a * b * c =0

б)если некомпланарные вектора a, b, c привести к 1 началу, то | a * b * c |=Vпараллепипеда, построенного на этих векторах

если a * b * c >0, то тройка a, b, c - правая

если a * b * c <0, то тройка a, b, c - левая

 





Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 318 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Либо вы управляете вашим днем, либо день управляет вами. © Джим Рон
==> читать все изречения...

2255 - | 1994 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.