Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Косой изгиб призматического стержня




Известно, что косой изгиб имеет место, когда силы, его вызывающие, не лежат в одной из главных плоскостей инерции. Однако, если разложить внешние силы по главным осям инерции Ох и Оу, то получим две системы сил P1x, P2x,..., Pnx и P1y, P2y,..., Pny, каждая из которых вызывает прямой изгиб с изгибающими моментами соответственно My и Мx (рис. 2). Применяя принцип независимости действия сил, нормальные напряжения s (рис. 3) определим как алгебраическую сумму напряжений от Mx и Мy:

Чтобы не связывать себя формальными правилами знаков, слагаемые будем определять по модулю, а знаки ставить по смыслу. Прогибы балки определим как геометрическую сумму прогибов от прямых изгибов (рис. 2)

Таким образом, расчет на косой изгиб с применением принципа независимости действия сил сводится к расчету на два прямых изгиба с последующим алгебраическим суммированием напряжений и геометрическим суммированием прогибов.

 

В случае поперечных сечений, имеющих две оси симметрии и выступающие угловые точки (рис. 4) с равными по модулю и максимальными одноименными координатами и напряжения в этих точках будут равны

Слагаемые в этом выражении рекомендуется определять по модулю, а знаки ставить по смыслу. Например, на рис. 5 верхний ряд знаков "+" и "-" соответствует напряжениям от Мx, а нижний ряд - от My, и напряжения в этих точках будут равны

Условие прочности для балок из пластичного материала с указанным типом сечений запишется в виде

В остальных случаях для определения max а (или max dp и max | sc | для хрупкого материала) необходимо по общей формуле проверить напряжения во всех подозрительных точках.

Есть и другой путь: положив s = 0, получим уравнение нейтральной линии. Так как напряжения в точках поперечного сечения будут пропорциональными расстояниям от нейтральной линии, то max s будут возникать в наиболее удаленных от нее точках.

18 очетание изгиба и кручения призматического стержня

Ключевые слова: вал, эквивалентный момент, эквивалдентные напряжения, прочность.

Исследуем этот вид деформации стержня на примере расчета вала кругового (кольцевого) поперечного сечения на совместное действие изгиба и кручения (рис. 1).

Примем следующий порядок расчета.

1. Разлагаем все внешние силы на составляющие

P1x, P2x,..., Pnx и P1y, P2y,..., Pny

2. Строим эпюры изгибающих моментов M y и M y. от этих групп сил.

У кругового и кольцевого поперечного сечений все центральные оси главные, поэтому косого изгиба у вала вообще не может быть, следовательно, нет смысла в каждом сечении иметь два изгибающих момента Mx, и My а целесообразно их заменить результирующим (суммарным) изгибающим моментом

который вызывает прямой изгиб в плоскости его действия относительно нейтральной оси n-n, перпендикулярной вектору Мизг. Эпюра суммарного момента имеет пространственное очертание и поэтому неудобна для построения и анализа. Поскольку все направления у круга с точки зрения прочности равноценны, то обычно эпюру Мизг спрямляют, помещая все ординаты в одну (например, вертикальную) плоскость. Обратим внимание на то, что центральный участок этой эпюры является нелинейным.

3. Строится эпюра крутящего момента Мz.

Наибольшие напряжения изгиба возникают в точках k и k', наиболее удаленных от нейтральной оси (рис. 3),

где Wизг - момент сопротивления при изгибе.

В этих же точках имеют место и наибольшие касательные напряжения кручения

где Wр - момент сопротивления при кручении.

Как следует из рис. 3, напряженное состояние является упрощенным плоским (сочетание одноосного растяжения и чистого сдвига). Если вал выполнен из пластичного материала, оценка его прочности должна быть произведена по одному из критериев текучести. Например, по критерию Треска-Сен-Венана имеем

Учитывая, что Wр=2Wизг, для эквивалентных напряжений получаем

где - эквивалентный момент, с введением которого задача расчета вала на совместное действие изгиба и кручения, сводится к расчету на эквивалентный изгиб.

Аналогично для Мэкв по критерию Губера-Мизеса получаем

Тогда условие прочности для вала из пластичного материала будет иметь вид

Для стержня из хрупкого материала условие прочности следует записать в виде

где Мэкв должен быть записан применительно к одному из критериев хрупкого разрушения. Например, по критерию Мора

где m = [sp] / [sc].

Обратим внимание на особенности расчета при сочетании изгиба, растяжения и кручения стержня прямоугольного поперечного сечения (рис. 4). Для выявления опасной точки здесь должны быть сравнены напряжения косого изгиба с растяжением в точке А, с эквивалентными напряжениями в точках В и С.

Полученные соотношения приобретают крайнюю необходимость и востребованность при выполнении Вами курсового проекта по основам конструирования при расчете на прочность и жесткость валов передач.

 





Поделиться с друзьями:


Дата добавления: 2016-10-30; Мы поможем в написании ваших работ!; просмотров: 581 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Есть только один способ избежать критики: ничего не делайте, ничего не говорите и будьте никем. © Аристотель
==> читать все изречения...

2220 - | 2173 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.