Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Коэффициент Браве - Пирсона




Для вычисления этого коэффициента применяют следующую форму­лу (у разных авторов она может выглядеть по-разному):

_ (SXYj - nXY (п - 1)^5у

где XX У-сумма произведений данных из каждой пары;

и-число пар;

Х-средняя для данных переменной X;

У-средняя для данных переменной У;

Дд. - стандартное отклонение для распределения х;

sy- стандартное отклонение для распределения у. Теперь мы можем использовать этот коэффициент для того, чтобы установить, существует ли связь между временем реакции испытуемых и эффективностью их действий. Возьмем, например, фоновый уровень контрольной группы.


Испытуемые

Эффектив­ность (X)

XY

Время

реакции (Y)


 


Д1

Д2

дз

19 10 12

152 150 156

 


Ю8 22 14 308

/I XY = 15-15,8- 13,4 = 3175,8;

(n- 1)V,= 14-3,07-2,29 =98,42;

3142-3175,8 -33,8 r = ———————— = ——— = -0,34.

98,42 98,42

Отрицательное значение коэффициента корреляции может означать, что чем больше время реакции, тем ниже эффективность. Однако величина его слишком мала для того, чтобы можно было говорить о достоверной связи между этим двумя переменными.

Теперь попробуйте самостоятельно подсчитать коэффициент корре­ляции для экспериментальной группы после воздействия, зная, что ЕХУ= 2953:

nXY=..... {п- l),^Sy=.....


Приложение Б

Какой вывод можно сделать из этих результатов? Если вы считаете что между переменными есть связь, то какова она-прямая или обраг-ная? Достоверна ли она [см. табл. 4 (в дополнении Б. 5) с критическими значениями г]?

Коэффициент корреляции рангов Спирмена г,

Этот коэффициент рассчитывать проще, однако результаты полу­чаются менее точными, чем при использовании г. Это связано с тем, что при вычислении коэффициента Спирмена используют порядок следо­вания данных, а не их количественные характеристики и интервалы между классами.

Дело в том, что при использовании коэффициента корреляции рангов Спирмена (г,) проверяют только, будет ли ранжирование данных для какой-либо выборки таким же, как и в ряду других данных для этой выборки, попарно связанных с первыми (например, будут ли одинаково «ранжироваться» студенты при прохождении ими как психологии, так и математики, или даже при двух разных преподавателях психологии?). Если коэффициент близок к + 1, то это означает, что оба ряда практи­чески совпадают, а если этот коэффициент близок к — 1, можно говорить о полной обратной зависимости.

Коэффициент ^ вычисляют по формуле

где (/-разность между рангами сопряженных значений признаков (неза­висимо от ее знака), а и-число пар.

Обычно этот непараметрический тест используется в тех случаях, когда нужно сделать какие-то выводы не столько об интервалах между данными, сколько об их рангах, а также тогда, когда кривые распреде­ления слишком асимметричны и не позволяют использовать такие параметрические критерии, как коэффициент г (в этих случаях бывает необходимо превратить количественные данные в порядковые).

Поскольку именно так обстоит дело с распределением значений эффективности и времени реакции в экспериментальной группе после воздействия, можно повторить расчеты, которые вы уже проделали для этой группы, только теперь не для коэффициента г, а для показателя г,. Это позволит посмотреть, насколько различаются эти два показателя.


Статистика и обработка данных 311

   
Испыту- Эффек- Время Ранги Ранги d d1 емые тивность реакции х* у* х У
Д 8 8 17, 12 5 7 49 Д 9 20 13 1 2 I 1 Д 10 6 20 15 11,5 3,5 12,25 Д 11 8 18 12 7,5 4,5 20,25 Д 12 17 21 2 13,5 11.5 132,25 Д 13 10 22 8,5 15 6,5 42,25 Д 14 10 19 8,5 9,5 1 1 Ю9 9 20 10 11,5 1,5 2,25 Ю 10 7 17 14 5 9 81 Д 11 8 19 12 9,5 2,5 6,25 Ю 12 14 14 4 3 1 1 Ю 13 13 12 5 1 4 16 Ю 14 16 18 3 7,5 4,5 20,25 Ю 15 11 21 7 13,5 6,5 42,25 Ю 16 12 17 6 5 1 1

 

* Следует помнить, что

1) для числа попаданий 1-й ранг соответствует самой высокой, а 15-й-самой низкой результативности, тогда как для времени реакции 1-й ранг соответствует самому короткому времени, а 15-и-самому долгому,

2) данным ex aequo придается средний ранг.


 


6-428

153- 15

== 1

= 0,24.

 


Таким образом, как и в случае коэффициента г, получен положитель­ный, хотя и недостоверный, результат. Какой же из двух результатов правдоподобнее: г = —0,48 или г, = +0,24? Такой вопрос может встать лишь в том случае, если результаты достоверны.

Хотелось бы еще раз подчеркнуть, что сущность этих двух коэф­фициентов несколько различна. Отрицательный коэффициент г указы­вает на то, что эффективность чаще всего тем выше, чем время реакции меньше, тогда как при вычислении коэффициента г, требовалось про­верить, всегда ли более быстрые испытуемые реагируют более точно, а более медленные - менее точно.

Поскольку в экспериментальной группе после воздействия был полу­чен коэффициент г,, равный 0,24, подобная тенденция здесь, очевидно, не прослеживается. Попробуйте самостоятельно разобраться в данных для контрольной группы после воздействия, зная, что ^_d2 = 122,5:

г, = 1 — ——————— = I — ——————— == 1 —; достоверно ли?

Каков ваш вывод?..........................................

Итак, мы рассмотрели различные параметрические и непараметри­ческие статистические методы, используемые в психологии. Наш обзор


312 Приложение £

был весьма поверхностным, и главная задача его заключалась в том чтобы читатель понял, что статистика не так страшна, как кажется, и требует в основном здравого смысла. Напоминаем, что данные «опыта», с которыми мы здесь имели дело,-вымышленные и не могут служить основанием для каких-либо выводов. Впрочем, подобный экс­перимент стоило бы действительно провести. Поскольку для этого опыта была выбрана сугубо классическая методика, такой же статисти­ческий анализ можно было бы использовать во множестве различных экспериментов. В любом случае нам кажется, что мы наметили какие-то главные направления, которые могут оказаться полезны тем, кто не знает, с чего начать статистический анализ полученных результатов.

Резюме

Существуют три главных раздела статистики: описательная ста­тистика, индуктивная статистика и корреляционный анализ.





Поделиться с друзьями:


Дата добавления: 2016-11-03; Мы поможем в написании ваших работ!; просмотров: 363 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Победа - это еще не все, все - это постоянное желание побеждать. © Винс Ломбарди
==> читать все изречения...

2194 - | 2031 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.