Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Аппаратная поддержка взаимоисключений




Наличие аппаратной поддержки взаимоисключений позволяет упростить алгоритмы и повысить их эффективность точно так же, как это происходит и в других областях программирования. Мы уже обращались к общепринятому hardware для решения задачи реализации взаимоисключений, когда говорили об использовании механизма запрета/разрешения прерываний.

Многие вычислительные системы помимо этого имеют специальные команды процессора, которые позволяют проверить и изменить значение машинного слова или поменять местами значения двух машинных слов в памяти, выполняя эти действия как атомарные операции. Давайте обсудим, как концепции таких команд могут быть использованы для реализации взаимоисключений.

Команда Test-and-Set (Проверить и присвоить 1)

О выполнении команды Test-and-Set, осуществляющей проверку значения логической переменной с одновременной установкой ее значения в 1, можно думать, как о выполнении функции

int Test_and_Set (int *target){

int tmp = *target;
*target = 1;
return tmp;

}

С использованием этой атомарной команды мы можем модифицировать наш алгоритм для переменной-замка, так чтобы он обеспечивал взаимоисключения

shared int lock = 0;

while (some condition) {

while(Test_and_Set(&lock));

Critical section

lock = 0;

Remainder section

}

К сожалению, даже в таком виде полученный алгоритм не удовлетворяет условию ограниченного ожидания для алгоритмов. Подумайте, как нужно его изменить для соблюдения всех условий.

Команда Swap (Обменять значения)

Выполнение команды Swap, обменивающей два значения, находящихся в памяти, можно проиллюстрировать следующей функцией

void Swap (int *a, int *b){

int tmp = *a;
*a = *b;
*b = tmp;

}

Применяя атомарную команду Swap, мы можем реализовать предыдущий алгоритм, введя дополнительную логическую переменную key локальную для каждого процесса:

shared int lock = 0;
int key;

while (some condition) {

key = 1;
do Swap(&lock,&key);
while (key);

Critical section

lock = 0;

Remainder section

}


 

Глава 6. Механизмы синхронизации

Рассмотренные в конце предыдущей главы алгоритмы хотя и являются корректными, но достаточно громоздки и не обладают элегантностью. Более того, процедура ожидания входа в критический участок включает в себя достаточно длительное вращение процесса в пустом цикле, вхолостую пожирая драгоценное время процессора. Существуют и другие серьезные недостатки у алгоритмов, построенных средствами обычных языков программирования. Допустим, что в вычислительной системе находятся два взаимодействующих процесса: один из них — H — с высоким приоритетом, другой — L — с низким приоритетом. Пусть планировщик устроен так, что процесс с высоким приоритетом вытесняет низкоприоритетный процесс всякий раз, когда он готов к исполнению, и занимает процессор на все время своего CPU burst (если не появится процесс с еще большим приоритетом). Тогда в случае, когда процесс L находится в своей критической секции, а процесс H, получив процессор, подошел ко входу в критическую область, мы получаем тупиковую ситуацию. Процесс H не может войти в критическую область, находясь в цикле, а процесс L не получает управления, чтобы покинуть критический участок.

Для того чтобы устранить возникновение подобных проблем были разработаны различные механизмы синхронизации более высокого уровня: семафоры, мониторы и сообщения, рассмотрению которых и посвящена данная глава.

Семафоры

Одним из первых механизмов, предложенных для синхронизации поведения процессов, стали семафоры, концепцию которых описал Дейкстра (Dijkstra) в 1965 году.

Концепция семафоров

Семафор представляет собой целую переменную, принимающую неотрицательные значения, доступ любого процесса к которой, за исключением момента ее инициализации, может осуществляться только через две атомарные операции: P (от датского слова proberen — проверять) и V (от verhogen — увеличивать). Классическое определение этих операций выглядит следующим образом:

P(S): пока S <= 0 процесс ожидает на семафоре S; S = S – 1;
V(S): S = S + 1;

Эта запись означает следующее: при выполнении операции P над семафором S сначала проверяется его значение. Если оно больше 0, то из S вычитается 1. Если оно меньше или равно 0, то процесс ожидает до тех пор, пока S не станет больше 0, после чего из S вычитается 1. При выполнении операции V над семафором S к его значению просто прибавляется 1.

Если семафоры реализованы на уровне ядра операционной системы, где доступны операции над процессами, то их определение имеет следующий вид:

P(S): если S <= 0 блокировать процесс на семафоре S; иначе S = S – 1;
V(S): если список процессов, заблокированных на семафоре S не пуст разблокировать один из таких процессов иначе S = S + 1;

Подобные переменные-семафоры могут быть с успехом применены для решения различных задач организации взаимодействия процессов. В ряде языков программирования они были непосредственно введены в синтаксис языка (например, в ALGOL-68), в других случаях применяются через использование системных вызовов. Соответствующая целая переменная располагается внутри адресного пространства ядра операционной системы. Операционная система обеспечивает атомарность операций P и V, используя, например, метод запрета прерываний на время выполнения соответствующих системных вызовов. Если при выполнении операции P заблокированными оказались несколько процессов, то порядок их разблокирования может быть произвольным, например, FIFO.





Поделиться с друзьями:


Дата добавления: 2016-10-23; Мы поможем в написании ваших работ!; просмотров: 892 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинайте делать все, что вы можете сделать – и даже то, о чем можете хотя бы мечтать. В смелости гений, сила и магия. © Иоганн Вольфганг Гете
==> читать все изречения...

2291 - | 2073 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.