Дыхательные контуры наркозных аппаратов подразделяют на нереверсивные, частично реверсивные и реверсивные. В нереверсивном (открытом) контуре поток свежего газа превышает минутный объем дыхания. Все неабсорбированные газы выбрасываются в атмосферу через клапан выдоха. Выдыхаемый газ не проходит через поглотитель CO2. Повторного введения выдыхаемого газа в дыхательный контур не происходит.
В частично реверсивном (полуоткрытом и полузакрытом) контуре поток свежего газа ниже, чем минутный объем дыхания, но выше, чем объем поглощения всех газов организмом больного. Разница между потоком свежего газа и объемом поглощенного газа равна объему, который выбрасывается в атмосферу через клапан выдоха. Выдыхаемая газовая смесь перемещается по трем направлениям: выбрасывается в атмосферу через клапан выдоха, абсорбируется в поглотителе CO2 или повторно поступает в дыхательный контур и вдыхается больным.
1 Авторы благодарны Гарри С. Лоу, M. D. за вклад в написание раздела "Случай из практики".
В полностью реверсивном (закрытом) контуре газ вообще не выбрасывается в атмосферу через клапан выдоха. Все выдыхаемые газы, за исключением CO2, снова поступают в дыхательный контур; выдыхаемый CO2 абсорбируется в поглотителе во избежание гиперкапнии; общий поток свежего газа равен объему поглощения всех газов в легких. Поток свежего газа, необходимый для поддержания требуемой фракционной альвеолярной концентрации анестетика и кислорода, зависит от скорости поступления анестетика в кровоток и метаболических потребностей. Необходимая скорость потока свежего газа достигается путем поддержания постоянного объема дыхательного контура (это отражается неизменным объемом дыхательного мешка в конце выдоха или подъемом мехов вентилятора на одну и ту же высоту) и постоянной фракционной концентрации кислорода в выдыхаемой смеси.
Каковы преимущества и недостатки анестезии по закрытому контуру?
В реверсивном дыхательном контуре сохраняется тепло и влажность циркулирующей газовой смеси, снижается загрязнение воздуха операционной выдыхаемыми парами анестетика, наглядно проявляются фармакокинетические принципы поглощения анестетика кровью в легких, обеспечивается раннее обнаружение негерметичности контура и метаболических изменений. Скорость потока свежего газа — главная определяющая стоимости ингаляционной анестезии парообразующими анестетиками. Некоторые анестезиологи считают, что анестезия по закрытому контуру увеличивает риск возникновения гипоксии, гиперкапнии и передозировки анестетика. Вне всякого сомнения, проведение анестезии по закрытому контуру требует высокой бдительности и обстоятельного знания фармакокинетики. Некоторые новые модели наркозных аппаратов не позволяют проводить низкопоточную анестезию, потому что в них принудительно подается поток газа, превышающий потребности организма в кислороде, или же конструктивно в них предусмотрена невозможность применения потенциально гипоксичес-кой газовой смеси.
Какие факторы определяют стоимость потребляемого ингаляционного анестетика?
Скорость потока свежего газа — только один из параметров, влияющих на потребление анестетика. Другие параметры — мощность, растворимость в крови и тканях и количество пара, образующегося при испарении 1 мл жидкого анестетика. Конечно, цена, которую больничная аптека платит производителю препарата, специальное оборудование, необходимое для применения анестетика (например, Тес 6) или мониторинга,— все эти факторы играют очевидную и важную роль. Менее очевидную роль играют непрямые факторы, которые влияют на быстроту перевода пациента из палаты пробуждения и продолжительность его пребывания в больнице: время пробуждения, частота возникновения рвоты и пр.
Какое оборудование необходимо для проведения анестезии по закрытому контуру?
Ни в коем случае нельзя проводить общую анестезию в отсутствие анализатора кислорода в дыхательном контуре. Во время низкопоточной анестезии концентрация кислорода в экспираторном колене дыхательного контура может быть значительно ниже концентрации во вдыхаемой смеси из-за потребления кислорода больным. Вследствие этого некоторые исследователи утверждают, что при анестезии по закрытому контуру необходимо измерять концентрацию кислорода именно в экспираторном колене дыхательного контура. Негерметичность дыхательного контура приводит к ошибочной переоценке потребления кислорода и закиси азота. Утечка газов при негерметичности дыхательного контура прямо пропорциональна среднему давлению в дыхательных путях и времени вдоха в структуре дыхательного цикла. Дыхательный контур современного наркозного аппарата может иметь до 20 мест потенциальной утечки, включая поглотитель CO2, соединения частей, однонаправленные клапаны, резиновые шланга и дыхательный мешок (см. "Случай из практики", гл. 4). Альтернативой испарителю служит прямое введение парообразующего анестетика в экспираторное колено дыхательного контура.
Можно ли прогнозировать потребление кислорода при анестезии по закрытому контуру?
При анестезии метаболизм соответствует уровню базальных потребностей, которые зависят только от массы и температуры тела больного.
Базальное потребление кислорода (VO2) в минуту равно массе тела в килограммах в степени % умноженной на 10:
VO2 = 10 х Масса тела (кг)3/4.
При массе 70 кг потребление кислорода будет составлять:
VO2= 10 х 703/4= 10 x 24,2 = 242 мл/мин.
Метаболические потребности в кислороде уменьшаются на 10 % при снижении температуры тела на каждый 1 0C ниже 37,6 0C:
VO2 при 36,6 0C = 242 - 24 = 218 мл/мин, VO2 при 35,6 0C = 218 - 22 = 196 мл/мин.
Эти формулы представляют собой единственную модель для прогноза потребления кислорода. Реальное потребление кислорода варьируется и должно рассчитываться индивидуально в зависимости от обстоятельств. Например, гиповолемический шок, гипотиреоз и наложение зажима на аорту снижают потребность организма в кислороде. Наоборот, злокачественная гипертермия, тиреотоксикоз, термические ожоги и сепсис увеличивают потребности в кислороде. Углубление уровня анестезии не оказывает значительного влияния на базальные метаболические потребности при условии полноценной тканевой перфузии.
Какое взаимоотношение существует между потреблением кислорода и образованием углекислого газа?
Образование углекислого газа составляет приблизительно 80 % от потребления кислорода (так называемый дыхательный коэффициент равен 0,8):
VCO2 = 8 х Масса (кг)3/4 = 194 мл СО2/мин.
Как рассчитать параметры вентиляции для обеспечения нормокапнии?
Минутный объем дыхания представляет собой сумму альвеолярной вентиляции и вентиляции ''мертвого пространства" (анатомического и аппаратного). При нормокапнии фракционная альвеолярная концентрация CO2 составляет приблизительно 5,6 %:
40 мм рт. ст.
(760 мм рт. ст.— 47 мм рт. ст.) = 5,6%
(где 40 мм рт. ст. — парциальное давление CO2 в альвеолах; 760 мм рт. ст. — атмосферное давление, 47 мм рт. ст. — давление паров воды.— Примеч. пер.)
Следовательно, объем альвеолярной вентиляции должен быть достаточным для того, чтобы удалить 194 мл CO2 в виде смеси с фракционной концентрацией 5,6 %:
va = VCO2 / 5,6 % = 194 мл/мин / 5,6 % = 3393 мл/мин.
Анатомическое "мертвое пространство" составляет 1мл/кг/вздох. При массе 70 кг:
Анатомическое "мертвое пространство" = Масса х 1 мл/кг/вдох = 70 мл/вдох.
Аппаратное "мертвое пространство" состоит из объема, занимающего дыхательный контур при ИВЛ. Этот параметр можно рассчитать, если известны растяжимость дыхательного контура и пиковое давление в дыхательных путях. Так, в типичном случае:
Аппаратное "мертвое пространство" = Растяжимость х Пиковое давление = 10 мл/см вод. ст. х 20 см вод. ст. = 200 мл/вдох.
Следовательно, при частоте дыхания 10 мин-1 минутный объем дыхания, определяемый по спирометру наркозного аппарата, должен составлять: vт = 3393 + 700 + 2000 = 6093 мл/мин, а дыхательный объем — 609 мл.
Можно ли прогнозировать скорость поглощения парообразующего ингаляционного анестетика кровью в легких?
Поглощение анестетика кровью в легких зависит от коэффициента распределения кровь/газ (λк/г), альвеолярновенозной разницы концентрации анестетика C(A-V) и сердечного выброса (Q):
Поглощение анестетика = λк/г х C(A -V) х QA.
Коэффициент распределения кровь/газ для каждого анестетика найден экспериментально (табл. 7-1). В начале анестезии концентрация анестетика в венозной крови равна О, поэтому альвеолярно-венозная разница приравнивается к фракционной альвеолярной концентрации анестетика. Альвеолярная концентрация, необходимая для обеспечения хирургической анестезии, обычно составляет 1,3 МАК (табл. 7-3). Сердечный выброс (л/мин) определяется интенсивностью метаболизма и потреблением кислорода:
Q = 2 х Масса (кг)3/4.
Таким образом, скорость поглощения галотана Qгал к концу 1-й минуты анестезии составит:
Qгал к концу 1-й минуты = 2,4 х(1,3 х 0,75)х(2 х 24,2) = 113 мл пара.
По мере поступления скорость поглощения анестетика снижается. Существует достаточно точная эмпирическая математическая модель, которая демонстрирует, что снижение поглощения анестетика обратно пропорционально квадратному корню от временной продолжительности его применения (модель квадратного корня времени). Другими словами, на 4-й минуте применения поглощение составляет 1/2 от 1-й минуты, на 16-й минуте — 1/2 от 4-й минуты. В нашем примере поглощение анестетика к концу 1-й минуты составит 112 мл/мин (112: 1), к концу 4-й минуты — 56 мл/мин (112: 2) и к концу 16-й минуты — 28 мл/мин (112: 4). В общем виде скорость поглощения анестетика в момент времени (t) рассчитывают по формуле:
Qанест через (t) мин = Qанест за 1-ю мин х t-1/2.
Как по скорости поступления анестетика в кровоток рассчитать количество поглощенного анестетика?
Общее количество поглощенного анестетика в произвольный момент времени t можно рассчитать, интегрируя функцию скорости поглощения (измеряя площадь под кривой FA/Fi):
Общее количество поглощенного анестетика = 2 х Qанест за 1 -ю минуту х t-1/2.
Следовательно, к концу 1-й минуты общее количество поглощенного анестетика составит 224 мл, к концу 4-й — 448 мл, к концу 9-й мин — 672 мл. Иными словами, в течение каждого интервала, равного "квадратному корню времени" (т. е. через 1 мин, затем через 4, затем через 9, 16, 25 мин), для поддержания необходимой фракционной альвеолярной концентрации нужно добавлять 224 мл пара анестетика. Это количество называется дозо-единицей.
Что такое насыщающая доза?
В начале анестезии необходимо заполнить анесте-тиком дыхательный контур, легкие (а именно — объем, равный функциональной остаточной емкости) и насытить им артериальную кровь. Только после этого анестетик начнет поступать в ткани. Количество анестетика, необходимое для заполнения дыхательного контура и легких (в эквиваленте функциональной остаточной емкости), равно сумме их объемов (приблизительно 100 дл), умноженной на необходимую альвеолярную концентрацию (1,3 МАК). Аналогично, количество анестетика, необходимое для насыщения артериальной крови, равно объему циркулирующей крови (который приблизительно соответствует сердечному выбросу), умноженному на альвеолярную концентра-цию и на коэффициент распределения кровь/газ. Для простоты сумма этих двух доз анестетика, получившая название насыщающей дозы и позволяющая заполнить дыхательный контур, легкие и ар-териальную кровь, приравнивается к одной дозо-единице. Таким образом, в течение 1-й минуты анестезии необходимо ингалировать две дозоеди-ницы анестетика: первую — как насыщающую дозу, вторую — для заполнения тканевых депо.
Какими методами вводят дозоединицу анестетика в течение каждого интервала, равного квадратному корню времени?
Можно вводить 224 мл паров галотана через универсальный испаритель, через специальный гало-тановый испаритель или же прямо в жидком виде в экспираторное колено контура. Так как давление насыщенного пара галотана при 20 0C составляет 243 мм рт. ст., то концентрация галотана на выходе из универсального испарителя будет равна 32 % (243 мм рт. ст./ 760 мм рт. ст.). В соответствии с уравнением выхода пара (см. гл. 4) в течение одного интервала для получения каждых 224 мл га-лотанового пара в универсальный испаритель должно поступать 477 мл кислорода:
224 мл х (760 - 243)/243 = 477 мл.
В современных испарителях постоянство концентрации анестетика достигается вне зависимости от потока. Следовательно, если общий поток (закись азота, кислород и пар анестетика) за один временной интервал составит 5 л, то требуемая концентрация составит 4,5 %:
224 мл/5000 мл = 4,5%.
Инъекция в дыхательный контур с помощью стеклянного шприца через металлический порт представляет собой удобный метод введения парообразующего анестетика. При испарении 1 мл жидкого галотана, метоксифлюрана, изофлюрана, эн-флюрана, десфлюрана или севофлюрана образуется примерно 200 мл (± 10 %) пара. Следовательно, в течение одного временного интервала необходимо вводить немногим более 1 мл жидкого галотана:
24 мл пара___________
(200 мл пара/1 мл жидкого анестетика) = 1,12 мл жидкого галотана.
Можно ли сходным образом рассчитать фармакокинетические параметры для закиси азота?
Аналогичные вышеприведенным расчеты справедливы и для закиси азота, хотя с двумя уточнениями. Во-первых, при атмосферном давлении нельзя назначить 1,3 МАК (приблизительно 137 % закиси азота) вследствие неизбежной гипоксии. Во-вторых, шунт в хорошо васкуляризованных тканях достигает 30 %, поэтому в кровоток попадает лишь 70 % от расчетного количества закиси азота. Это приводит к необходимости введения корректировочного шунт-фактора 0,7 в уравнение поглощения:
Поглощение анестетика = 0,7 х 0,47 х % N2O х Q. При массе 70 кг и концентрации закиси азота 65 %:
QN2O к концу 1-й минуты = 0,7 х 0,47 х 65 х (2) х (24,2) = 1035 мл/мин.
Дозоединица для закиси азота составляет:
Дозоединица = 2 х QN2O к концу 1-й минуты = 2070 мл/мин.
Требуется большая насыщающая доза:
Заполнение дыхательного контура = = (ФОЕ + Объем дыхательного контура) х 65 % =
= 1000дл х 0,65 = 65 дл. Насыщение артериальной крови =
= ОЦК х λк/г х 65 % =
= 50дл х 0,45 х 0,65 = 15дл.
Общая насыщающая доза = 65 дл + 15 дл =
= 80дл = 8 л.
Следовательно, в 1-ю минуту анестезии закисью азота необходимо ингалировать несколько литров закиси азота. В клинической практике достаточно количества, заполняющего дыхательный контур, о чем судят по дыхательному мешку или мехам вентилятора. Если фракционная концентрация кислорода в выдыхаемой смеси снижается ниже приемлемого уровня, следует увеличить поток кислорода до уровня, превышающего базальное потребление (242 мл/мин). Закись азота можно сочетать с другими ингаляционными и неингаляционными анес-тетиками. Так как МАК складываются, добавления 0,65 МАК любого ингаляционного анестетика будет достаточно для адекватной анестезии.