Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Методы определения причинно-следственных взаимосвязей факторов риска и здоровья населения, эффективности оздоровительных мероприятий




Одним из доступных методов установления взаимосвязи между факторами является расчет критерия согласия ж2. Для выбора метода определяют в таблице число степеней свободы (число клеток, в которых можно изменять результат без изменения итогов, — это число строк минус единица, умноженное на число граф, минус единица). Если таблица четырехпольная (одна степень свободы), то критерий согласия вычисляется по формуле с буквенными обозначениями. Если число степеней две и более (при трех и более признаках), то расчет критерия ж2 производится методом “от противного” (нулевая гипотеза). Предполагается отсутствие связи между факторами. Тогда распределение признаков (в процентах) будет такое, как в итоговых строках. Затем вычисляется вероятностная величина (абсолютная) для каждого фактора (построчно). Данные заносятся в формулу, рассчитывается сумма различий между фактическими и действительными числами. Результат определяется по специальным таблицам. Если полученная величина ж2 больше нуля, то нулевая гипотеза (об отстутствии связи) отклоняется и достоверная взаимосвязь считается установленной.

Таким образом можно устанавливать взаимосвязь между частотой выкуренных сигарет и заболеваниями органов дыхания; между охватом населения прививками и уровнем инфекционной заболеваемости; между величиной или характером использования лекарственных препаратов и интенсивностью выздоровления и т. д.

 

Методы изучения корреляционных связей при оценке показателей здоровья и факторов окружающей среды

При анализе результатов медицинских исследований часто возникает необходимость определения достоверности полученных данных. Известны два вида связи между явлениями (признаками): функциональная и корреляционная. Функциональная проявляется в виде изменения одного признака при изменении числовых значений другого на строго определенную величину. Это часто бывает при физических и химических явлениях. При корреляционных связях, характерных для медико-биологических явлений, значению одного признака соответствуют разные значения других признаков. Корреляционная связь необходима, например, при оценке взаимосвязей между стажем работы и уровнем заболеваемости работающих; между разными уровнями физических факторов окружающей среды и состоянием здоровья; между различными уровнями интенсивности нагрузки и частотой (уровнем) физиологических реакций организма; между сроками госпитализации и частотой осложнений.

Корреляционная связь бывает прямая (при увеличении одного признака увеличивается другой) и обратная (при увеличении одного показателя другой уменьшается). Коэффициент корреляции свидетельствует не только о направлении связи, но и об уровне этой связи. Сильная связь выражается коэффициентом от 0,7 до 0,99, средняя — от 0,3 до 0,69, слабая — до 0,29. При нулевом значении коэффициента связи отсутствуют.

Наиболее простыми являются ранговая корреляция и коэффициент корреляции. При ранговой корреляции числовые выражения сравниваемых рядов величин ранжируют, то есть проставляют ранговые цифры (от 1 и далее) и подставляют значения в формулу с учетом разницы порядковых значений. При расчете коэффициента корреляции сначала вычисляют среднее значение в каждом вариационном ряду сравниваемых групп. Затем находят отклонение каждой величины ряда от полученной средней. Для устранения отрицательных значений эти величины возводят в квадрат и подставляют в формулу. По величине коэффициента устанавливают направление и силу связи. Достоверность коэффициента определяют по табличным значениям и при расчете средней ошибки. Коэффициент корреляции должен превышать свою ошибку не менее чем в 3 раза.

 





Поделиться с друзьями:


Дата добавления: 2016-10-23; Мы поможем в написании ваших работ!; просмотров: 853 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент может не знать в двух случаях: не знал, или забыл. © Неизвестно
==> читать все изречения...

2809 - | 2374 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.