Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Determination of geometrical parameters for airplane units




Determination of wing parameters.

 

1.7.1.1 The wing surface area of the projected plane is.

S = m0.g/p0,

where g = 9.8 m/c2, p0 = 5809.5 N/m2

S = 190000x 9.8/ 5809.5

S =320.5 m2

 

1.7.1.2 Wing span

L = ,

where the value of λ is taken from table. A,

L = (7.8)(320.5)

L = 50 m.

1.7.1.3 Wing chord

Root (on axis of airplane symmetry) b0 and tip bK wing chords are determined proceeding from the values S, η, L;

b0 = . ,

bo =(320.5/50)(2x2.6/2.6+1)

b0 = 9.23 m.

bK =

bk = 9.23/2.6

bK = 3.55 m.

where value η = 4.2 taken from table A

1.7.1.4 Wing mean aerodynamic chord (MAC) is calculated by the formula

bA = .b0 ,

bA =(2x9.23/3)[ (2.6)+2.6+1/2.6(2.6+1)]

bA = 6.81 m

 

Coordinate of MAC along a wing span is determined by the relation

zA = . .

zA =(50/6)(2.6+2/2.6+1)

zA = 10.637 m

Coordinate of MAC nose along an axis 0x

xA = zA.tanχLE

where χLE (sweep angle of the wing’s leading edge) = 32.37O

tanχLE = tanχ + .

tanχLE = 0.577+[2.6-1/7.8(2.6+1)]

= 0.6339

where χ is the sweep angle of the wing’s quarter-chord line and is taken from table A.

thus xA = 10.637 x 0.6339

xA = 6.742 m.

Moreover the geometrical verification of the wing MAC has also been done.

Fig1.20 Geometrical determination of MAC.

Fuselage Parameters

 

The size and shape of subsonic aircraft are generally determined by the size and mass of the cargo. Arrangement of the cargo may vary depending size and range.

The main parameters needed to start constructing the fuselage section are as follows:

LF (Overall fuselage length) = λF. DF = 9 x 5.8 = 52.2 m;

DF (Diameter of the fuselage) = 5.8 m;

LN (Fuselage nose length) = λN. DF = 1.9 x 5.8 = 11.02;

LT (Fuselage rear length) = λT. DF = 3x 5.8 = 17.4.

where λF, λN, λT are the aspect ratio of fuselage, nose part, rear part respectively.

Tail-unit parameters

 

The tail-unit of an airplane consists of the horizontal stabilizer and the vertical stabilizer. The geometrical calculations that involves for constructing the tail-unit are the same as that of the wing.

Distance from the airplane centre of mass up to the horizontal tail-unit centre of pressure L HS for normal configuration is determined according to recommendation which are based on statistical data.

Distance from the vertical tail-unit centre of pressure up to the airplane centre of mass L VS in zero approximation may be considered such which is equal to the distance of horizontal tail-unit, where L VS = L HS.

Horizontal tail unit

 

1.7.3.1.1 The surface area the horizontal stabilizer is:

SHS = ̅SHS . S

SHS = 0.23x 320.5

SHS = 73.715 m2;

where ̅ SHS is the ratio of surface area of the horizontal stabilizer to the wing’s area.

1.7.3.1.2 The length of the Horizontal stabilizer is equal to

LHS = (λHS.SHS)-2

Lhs = (2.1)(76.92)

HS = 12.7 m;

where the value of λHS is taken from table. A

 

1.7.3.1..3 Chord of HS

Root (on axis of airplane symmetry) b0 HS and tip bK HS chords are determined proceeding from the values SHS, ηHS, LHS;

b0 HS = (SHS/LHS).(2ηHSHS+1)

bohs =(73.715/12.7)(2x2.4/2.4+1)

b0 HS = 8.55 m

bK HS = bK HSHS

bkhs =8.55/2.4

bK HS = 3.56m

where value η = 2 and is takem from table A.

1.7.3.1.4 Mean aerodynamic chord (MAC) of HS is calculated by the formula

bA HS = { .b0 HSHS2 + ηHS +1) } / {ηHSHS + 1)},

bAHS ={[2x(2.4)+2.4+1]/3}/2.4(2.4+1)

bA HS= 6.4 m

 

Coordinate of MAC along a Horizontal stabilizer is determined by the relation

zA HS =(LHS/6).(ηHS+2)/(ηHS+1)

zAHS =(12.7/6) (2.4+2/2.4+1)

zA HS= 2.73 m

Coordinate of MAC nose along an axis 0x

xA HS = zA HS.tanχLE(HS)

where χLE (sweep angle of the horizontal stabilizer’s leading edge) is taken from table A,

tanχLE(HS) = tanχHS + (ηHS-1)/{𝝀HSHS+1)} .

tanχLE(HS) = (tan 340 ) ­+ (2.4-1)/{ 2.1(2.4+1)}

tanχLE(HS) = 0.868

thus, xA HS = 2.73 x 0.868 = 2.37 m

 

Vertical tail unit

 

1.7.3.2.1 The surface area the vertical stabilizer is:

SVS = ̅SVS . S

SVS = 0.16 x 320.5 m

SVS = 51.28 m2;

where ̅ SVS is the ratio of surface area of the vertical stabilizer to the wing’s area.

1.7.3.2.2 Length of Vertical stabilizer is equal to

LVS = (λVS.SVS)-2

Lvs = (1.4)(51.28)

VS = 8.47 m;

where the value of λVS is taken from table. A’

 

1.7.3.2.3 Chords of VS

Root (on axis of airplane symmetry) b0 VS and tip bK VS chords are determined proceeding from the values SVS, ηVS, LVS;

b0 VS = (SVS/LVS).(2ηVSVS+1)

bovs = (51.28/8.47) (2x2.6/2.1+1)

b0 VS = 8.742 m

bK VS = bK VSVS

bkvs =8.742/2.6

bK VS = 3.362 m

where value ηVS = 1.5 and is taken from table A,

1.7.3.2.4 The mean aerodynamic chord (MAC) is calculated by the formula

bA VS = { .b0 VSVS2 + ηVS +1) } / {ηVSVS + 1)},

bAVS =(2x8.742/3)[(2.6 +2.6+1)/(2.6)(2.6+1)]

bAVS = 6.451 m

 

Coordinate of MAC along a Vertical stabilizer is determined by the relation

zA VS = (LVS/3).(ηVS+2)/(ηVS+1)

zAvs =(8.47/3).(2.6+2/2.6+1) zAVS = 3.609 m

Co-ordinate of MAC nose along an axis 0x

xA VS= zA VS.tanχLE(VS)

where χLE(VS) sweep angle of the Vertical stabilizer’s leading edge is taken from table A,

tanχLE(VS) = tanχVS + (ηVS-1)/{𝝀VSVS+1)}

tanχLE(VS) = (tan 390) {(2.6-1)/{1.4(2.6+1)}

tanχLE(VS) = 1.062

thus, xA VS = 1.86 x 1.062 = 1.96 m





Поделиться с друзьями:


Дата добавления: 2016-10-22; Мы поможем в написании ваших работ!; просмотров: 439 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2282 - | 2212 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.