Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Разделение жидких растворов




Законы Гиббса-Коновалова устанавливают связь между составом жидкого раствора и составом насыщенного равновесного с ним пара в зависимости от температуры и давления.В равновесной двухкомпонентной системе сумма мольных долей компонентов в жидкой и паровой фазах равны единице:

 

Законы Гиббса-Коновалова и предыдущее уравнение справедливы для двухкомпонентных смесей, состоящих из летучих компонентов.Равновесие между раствором и паром удобно рассма-тривать в виде диаграмм, выражающих зависимость температуры жидкой смеси от ее состава.

1-закон Гиббса-Коновалова

В условиях равновесия относительное содержание компонента в паровой фазе отличается от содержания этого компонента в жидком растворе.В паре содержание больше того компонента, добавление которого в раствор понижает температуру кипения или повышает давление насыщенных паров.Пар обогащается более летучим компонентом. При постоянном давлении температура кипения раствора возрастает при увеличении концентрации компонента, содержание которого в паре меньше, чем в растворе. При постоянной температуре давление пара над раствором при увеличении концентрации компонента, содержание которого в паре больше, чем в растворе.

Диаграммы состава «жидкость-пар» двухкомпонент-ной системы при постоянном давлении (а) и постоянной температуре (б).
I-паровая фаза; II -пар+жидкость; III - жидкая фаза.

 

2-закон Гиббса-Коновалова

Точки экстремума на кривых температуры кипения (P=const) или на кривых давления (T=const) соответствуют растворам, состав которых одинаков с составом равновесного с ней пара. Нераздельнокипящие смеси называют азеотропными смесями. В условиях равновесия азеотропные смеси испаряются как чистое вещество.В азетропных смесях в точках экстремума

 

Законы Гиббса-Коновалова справедливы вдали от критического состояния двухфазной системы.

Диаграммы состава «жидкость-пар» двухкомпонент-ной системы с азеотропными точками при постоянном давлении (а) и постоянной температуре (б).
I-паровая фаза; II -пар+жидкость; III - жидкая фаза.

Термодинамическое обоснование законов Гиббса-Коновалова

Отношение между долями компонентов в паровой и жидкой фазах выражается следующим уравнением:

 

 

Уравнение показывает изменение состава жидкости и пара в соответствити с закономами Гиббса-Коновалова.К термодинамическому обоснованию законов Гиббса-Коновалова можно подойти, используя уравнение Дюгема-Маргулиса.

 
 

 

 


Уравнение Дюгема-Маргулиса позволяет определить связь между изменением парциального давления компонентов (рА, рВ) и составвом раствора (NAЖ). С его помощью можно рассчитать давление пара одного из компонентов раствора, если известны давление пара другого компонента и состав раствора.Уравнение Дюгема-Маргулиса справедливо для любого неидеального двухкомпонентного жидкого раствора, образованного летучими компонентами.Уравнение Дюгема-Маргулиса позволяет определить изменение общего давления системы в зависимости от мольной доли более летучего компонента, которое равно:

 

 

Перегонка (дистилляция) и ректификация

Соотношение между жидкой и паровой фазами в гетерогенной области II диаграммы состава двухкомпонентной системы находят по правилу рычага.

Правило рычага:

Отрезки на прямой, соединяющей на диаграмме состава двухкомпонентной системы паровую и жидкую фазы, отсекаемые определенной точкой на этой прямой, обратно пропорционально числу молей каждой из фаз. при температуре tкип правило рычага записывается следующим образом:

 

 

Дистилляцией или дробной перегонкой называют разделение жидких растворов, основанное на отличии состава жидкости от состава образующегося из нее пара.Дистилляция осуществляется путем частичного испарения и последующей конденсации пара.Отгонная фракция (дистиллят) обогащена более летучим (низкокипящим) компонентом, а неотогнанная жидкость (кубовой остаток, конденсат) обогащена менее летучим (высококипящим) компонентом.Количественно оценку дистилляции проводят при помощи коэффициента разделения a:

 

 

В простейших системах a не зависит от состава системы и равен

 
 


Твердые растворы

Твердыми растворами называют однородные системы, состоящие из двух и более твердых компонентов.Способность образовывать твердые растворы свойственны всем кристаллическим твердым телам.В большинстве случаях твердые растворы образуются в узком интервале концентрации, значительно реже в широком интервале концентрации. Примеры: золото для ювелирных изделий (Au-Cu), драгоценные природные камни, слюда, полевые шпаты, сплавы металлов, сталь, чугун, латунь и др. В зависимости от способа получения и особенности взаимодействия компонентов твердые растворы делятся на растворы:1)замещения; 2) внедрения и 3) вычитания. Твердые растворы замещения образуются в результате замещения молекул, атомов и ионов в кристаллических решетках растворителя на молекулы, атомы и ионы растворенного вещества. Твердые растворы замещения образуют элементы, атомные радиусы которых отличаются не более чем на 15 %. К ним можно отнести сплав Cu-Ni. Твердые растворы внедрения образуют атомы радиусы которых существенно отличаются друг от друга.Такие растворы образуются когда неметаллы (бор, водород, кислород, азот, углерод) в металлах. К ним относятся чугун, сталь и др. В твердых растворах вычитания происходит «выпадение» атомов из кристаллической решетки. Такие системы иногда называют твердыми растворами с дефектами решетки. В зависимости от взаимной растворимости компонен-тов твердые растворы делятся на неограниченные и ограниченные твердые растворы. В зависимости от растворимости компонентов раство-ра различают системы,

1) компоненты которых взаимно неограниченно раствори-мы в жидком и твердом состоянии,

2) компоненты которых растворимы лишь в жидком состоянии, а в твердом состоянии не образуют раство-ры (растворы с эвтектикой).





Поделиться с друзьями:


Дата добавления: 2016-10-06; Мы поможем в написании ваших работ!; просмотров: 1280 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Ваше время ограничено, не тратьте его, живя чужой жизнью © Стив Джобс
==> читать все изречения...

2245 - | 2190 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.