Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Выбор без возвращения, с учётом порядка




Основные формулы комбинаторики

В данном разделе мы займёмся подсчётом числа «шансов». О числе шансов говорят, когда возможно несколько результатов какого-либо действия (извлечение карты из колоды, подбрасывание кубика или монетки). Число шансов — это число способов проделать это действие или, что то же самое, число возможных результатов этого действия.

Теорема о перемножении шансов

Пусть одно действие можно проделать пятью способами, а другое — двумя. Каким числом способов можно проделать пару этих действий?

Теорема 1. Пусть множество состоит из элементов: , а множество — из элементов: . Тогда можно образовать ровно пар , взяв первый элемент из множества , а второй — из множества .

Замечание 1. Можно сформулировать утверждение теоремы 1 так: если первый элемент можно выбрать способами, а второй элемент — способами, то пару элементов можно выбрать способами.

Доказательство. С элементом мы можем образовать пар: . Столько же пар можно составить с элементом , столько же — с элементом и с любым другим из элементов множества . Т.е. всего возможно пар, в которых первый элемент выбран из множества , а второй — из множества .

QED

Упражнение 1. С помощью теоремы 1 доказать, что:

а)

при подбрасывании трёх монет возможно 2·2·2=8 различных результатов;

б)

бросая дважды игральную кость, получим 6·6=36 различных результатов;

в)

трёхзначных чисел бывает 9·10·10=900;

г)

трёхзначных чисел, все цифры которых различны, существует 9·9·8;

д)

чётных трёхзначных чисел возможно 9·10·5.

Урны и шарики

Есть урна (ящик), содержащая пронумерованных объектов (шаров). Мы выбираем из этой урны шаров; результатом выбора является набор из шаров. Нас интересует, сколькими способами можно выбрать шаров из , или сколько различных результатов может получиться. На этот вопрос нельзя дать однозначный ответ, пока мы не определимся: а) с тем, как организован выбор (можно ли шары возвращать в урну), и б) с тем, что понимается под различными результатами выбора.

Рассмотрим следующие возможные способы выбора.

1.

Выбор с возвращением: каждый вынутый шар возвращается в урну, каждый следующий шар выбирается из полной урны. В полученном наборе из номеров шаров могут встречаться одни и те же номера.

2.

Выбор без возвращения: вынутые шары в урну не возвращаются, и в полученном наборе не могут встречаться одни и те же номера.

Условимся, какие результаты выбора (наборы из номеров шаров) мы будем считать различными. Есть ровно две возможности.

1.

Выбор с учётом порядка: два набора номеров шаров считаются различными, если они отличаются составом или порядком номеров. Так, при выборе трёх шаров из урны, содержащей 5 шаров, наборы (1, 5, 2), (2, 5, 1) и (4, 4, 5) различны, если порядок учитывается.

2.

Выбор без учёта порядка: два набора номеров шаров считаются различными, если они отличаются составом. Наборы, отличающиеся лишь порядком следования номеров, считаются одинаковыми.

Так, наборы (1, 5, 2) и (2, 5, 1) не различаются и образуют один и тот же результат выбора, если порядок не учитывается.

Подсчитаем, сколько возможно различных результатов для каждой из четырёх схем выбора (выбор с возвращением или без, и в каждом из этих случаев — с учётом порядка или без).

Упражнение 2. Перечислить все возможные результаты в каждой из четырёх схем при выборе двух шаров из четырёх. Например, при выборе с возвращением и без учёта порядка: (1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4).

Выбор без возвращения, с учётом порядка

Теорема 2. Общее количество различных наборов при выборе элементов из без возвращения и с учётом порядка равняется

и называется числом размещений из элементов по элементов.

Доказательство. Первый шар можно выбрать способами, его номер — любой из возможных. При любом выборе первого шара есть способ выбрать второй шар. По теореме 1, число возможных пар

равно . Для каждой такой пары есть способа выбрать третий шар. По теореме 1, число возможных троек

равно произведению числа пар и числа способов выбора третьего шара, т.е. равно . Продолжая рассуждения, получим, что общее число возможных наборов из шаров равно . В этом произведении сомножителей последний множитель есть число способов выбора -го шара, когда уже выбраны предыдущие.

QED

Следствие 1. Если в множестве элементов, то существует ровно перестановок этих элементов.

Доказательство. Перестановка — результат выбора без возвращения и с учётом порядка элементов из . Поэтому общее число перестановок равно

QED

Упражнение 3. Найти, сколько всего возможно различных результатов в следующих экспериментах:

а)

из колоды в 36 карт без возвращения, с учётом порядка вынимают три карты;

б)

Вася, Петя, Оля и Лена занимают какие-то четыре из десяти мест в классе;

в)

из русского алфавита выбирают четыре разные буквы и составляют слово;

г)

из различных цифр, не равных нулю, составляется трёхзначное число.





Поделиться с друзьями:


Дата добавления: 2016-10-22; Мы поможем в написании ваших работ!; просмотров: 1216 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Свобода ничего не стоит, если она не включает в себя свободу ошибаться. © Махатма Ганди
==> читать все изречения...

2381 - | 2132 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.