Лекции.Орг


Поиск:




Добро пожаловать в Солнечную систему




Приятного чтения!

Билл Брайсон Краткая история почти всего на свете

 

 

«Краткая энциклопедия почти всего на свете»:

Гелеос; Москва; 2007; ISBN 5-8189-0794-5


Аннотация

 

«Краткая история почти всего на свете» Билла Брайсона – самая необычная энциклопедия из всех существующих! И это первая книга, которой была присуждена престижная европейская премия за вклад в развитие мировой науки имени Рене Декарта.

По признанию автора, он старался написать «простую книгу о сложных вещах и показать всему миру, что наука – это интересно!».

Книга уже стала бестселлером в Великобритании и Америке. Только за 2005 год было продано более миллиона экземпляров «Краткой истории». В ряде европейских стран идет речь о том, чтобы заменить старые надоевшие учебники трудом Билла Брайсона.

В книге Брайсона умещается вся Вселенная от момента своего зарождения до сегодняшнего дня, поднимаются самые актуальные и животрепещущие вопросы: вероятность столкновения Земли с метеоритом и последствия подобной катастрофы, темпы развития человечества и его потенциал, природа человека и характер планеты, на которой он живет, а также истории великих и самых невероятных научных открытий.


 

Физик Лео Силард как-то сказал своему другу Хансу Бете, что думает начать вести дневник. «Публиковать его не собираюсь, буду всего лишь записывать факты для сведения Всевышнего». – «Думаешь, Всевышний не знает фактов?» – спросил Бете. «Да, – ответил Силард, – факты Он знает, но не знает этой их интерпретации».

Ханс Христиан фон Байер.

Укрощение атома

 

Предисловие научного редактора перевода

 

Книга, которую вы держите в руках, призвана изменить ваше представление о науке как о неоправданно сложной и скучной сфере человеческой деятельности. Многие просто не догадываются о том, что наука может быть увлекательной – годы обучения в школе убедили их в обратном. И такой эффект характерен не только для российского среднего образования. О сходных проблемах рассказывает по своему опыту и британец Билл Брайсон. Видимо, это общая проблема массовой школы с ее стандартными программами и скучными учебниками, которые бессильны привить интерес к науке.

А вот у Брайсона это получилось. В чем секрет его успеха? Прежде всего, это, конечно, представление науки через характеры и судьбы людей, через их жизненные коллизии, дружбу и вражду, надежды и разочарования, взлеты и падения. Для массовой культуры (а популяризация науки – это массовая культура) эксцентричный ученый – это типичный персонаж и в то же время неповторимый в своей индивидуальности, когда речь идет о реальной исторической фигуре. Творческая личность всегда держит внимание публики в напряжении. И, пользуясь этим, Брайсон подбрасывает читателю научные знания и их взаимосвязи почти так же, как вплетает улики в роман мастер детектива.

Другой секрет книги – простота и ясность изложения.

Автор с первых же страниц признается в том, что он – дилетант в науке. Просто в какой-то момент у него появилось желание и возможность потратить три года, чтобы в меру сил разобраться с современными научными представлениями. Казалось бы, в этом нет ничего особенного. Но статус профессионального журналиста дал Брайсону два важных преимущества: он имел доступ к лучшим специалистам в каждой интересующей его области и обладал опытом написания легкого для восприятия текста.

В отличие от многих других научно-популярных книг, где автор последовательно излагает твердо установленные факты, Брайсон выступает скорее в роли гида, ведущего экскурсию по науке. Книга насыщена увлекательными подробностями – от неожиданных фактов до исторических анекдотов – и невероятно широка по охвату. В этом третий секрет ее успеха. Здесь вы действительно найдете почти все: Большой Взрыв и происхождение человека, историю открытия динозавров и массовое отравление свинцом, взвешивание Земли и глубоководные погружения. Обо всем этом написано ярко, доступно и, что немаловажно, кратко. Да-да, кратко, а объем книги – это лишь отражение большого числа затронутых в ней вопросов.

По многим темам, уместившимся у Брайсона всего на нескольких страницах, написаны целые тома. И в этом четвертый секрет успеха книги – она содержит множество ссылок на работы коллег-популяризаторов и может служить путеводителем в огромном объеме научно-популярной литературы. К сожалению, многие из упоминаемых авторов и книг недоступны читателю на русском языке – так что будем считать, что это путеводитель для российских издателей.

Конечно, в столь масштабном проекте не удалось обойтись и без ряда неточностей. Сам автор упоминает, что благодаря любезному участию консультантов он исправил в тексте не одну сотню ошибок, и он сам не знает, сколько еще их осталось на страницах книги. Именно поэтому при подготовке русского издания мы постарались проверить и уточнить приводимые факты и цифры.

В некоторых случаях, когда ошибки были очевидны (например, в числовых значениях), они исправлены прямо в тексте. В более сложных ситуациях даются ссылки на примечания в конце книги (обозначены цифрами). Также в некоторых примечаниях даются оговорки, когда автор в угоду краткости и ясности излишне упрощает существующие научные представления. Впрочем, не следует ожидать от увлекательной обзорной экскурсии досконального и точного изучения каждого экспоната.

Далеко не все примечания связаны с ошибками. Наука в наше время развивается очень быстро. За неполных 3 года, прошедших с момента выхода книги на английском языке, ряд утверждений успел устареть. Например, Плутон в 2006 году утратил статус планеты, а австралиец Роберт Эванс, которому посвящена третья глава книги, уступил лидерство в рейтинге любителей-первооткрывателей сверхновых звезд шотландцу Тому Боулсу.

Наконец, еще один тип примечаний связан с персоналиями, которые упоминаются на страницах книги. А имен в ней очень много. Прежде всего, это, конечно, ученые. Билл Брайсон считает своим долгом устранять исторические несправедливости и указывать истинных первооткрывателей или авторов идей в тех случаях, когда в общественном сознании научное достижение связано с другими именами. В большинстве случаев все необходимые сведения об ученых содержатся на страницах книги, и подбор этих сведений – часть замысла автора.

Однако нередко в тексте упоминаются мнения или цитаты с указанием имени научного журналиста или ученого-популяризатора без каких-либо пояснений. Многие из них хорошо известны любителям науки в англоязычных странах, а если даже и неизвестны, то информацию очень просто получить в Интернете. При выходе из англоязычного культурного пространства возникает необходимость пояснить статус этих авторов. В таких случаях нами дается примечание с указанием специализации, места работы и основных достижений упомянутого эксперта.

И, наконец, последний момент, который надо иметь в виду при чтении книги Билла Брайсона, – она написана англичанином. Поэтому его в первую очередь интересует наука, сделанная в Великобритании (made in UK) или, немного шире, в англоязычном мире – в США и в Австралии. Достижения вечных соперников французов традиционно даются со слегка ироничным подтекстом, а на долю других стран приходятся лишь отдельные имена. Например, из российских ученых подробно говорится только о Менделееве.

Но не стоит обижаться на эту невольную предвзятость. Возможно, отчасти благодаря ей, а также многочисленным ссылкам на работы других научных писателей Брайсон получил в 2004 году премию «Авентис», присуждаемую Лондонским Королевским обществом и Британской национальной академией наук за лучшую научно-популярную книгу года. А уже благодаря этой премии книга получила международную известность, достигла тиража более 300 тысяч экземпляров и была в итоге переведена на русский язык. И теперь у вас есть замечательная возможность провести несколько вечеров за увлекательным и познавательным чтением.

Александр Сергеев Москва, 2006

 

От автора

 

Сейчас, в начале 2003 года, я держу перед собой несколько страничек доброжелательных и тактичных замечаний Иана Таттерсолла из Американского музея естественной истории. Он, среди прочего, отмечает, что Перигё – не винодельческий район, что, несмотря на изобретательность моего решения, как-то не принято выделять курсивом классификационные подразделения выше уровня рода и вида, что я упорно искажаю написание Олоргезайли (места, где я побывал совсем недавно), и далее в том же духе касательно двух глав, относящихся к сфере его интересов – первобытному человеку.

Кто знает, сколько еще авторских ляпов выплывет на этих страницах. Но благодаря, в частности, доктору Таттерсоллу и всем, кого я собираюсь здесь отметить, их будет на много сотен меньше. Я не могу приступить к повествованию, не поблагодарив должным образом тех, кто помог мне написать эту книгу. Особенно я обязан тем, кто с неизменным великодушием и любезностью проявляли поистине героическое терпение, отвечая на один бесконечно повторявшийся простой вопрос: «Прошу прощения, но не объясните ли вы это еще раз?».

В Англии на мои вопросы отвечали Дэвид Кэплин из Имперского колледжа в Лондоне; Ричард Форти, Лен Эллис и Кейти Уэй из Музея естественной истории; Мартин Рафф из Университетского колледжа в Лондоне; Розалинд Хардинг из Института биологической антропологии в Оксфорде; доктор Лоренс Смаджи, ранее работавший в институте Уэллком, и Кит Блэкмор из «Таймс».

В Соединенных Штатах: Иан Таттерсолл из Американского музея естественной истории в Нью-Йорке; Джон Торстенсен, Мэри К. Хадсон и Дэвид Бланчфлауэр из Дартмутского колледжа в Гановере, штат Нью-Гэмпшир; доктор Уильям Эбду и доктор Брайен Марш из медицинского центра Дартмут-Хичкок в Ливане, штат Нью-Гэмпшир; Рэй Андерсон и Брайен Витцке из Департамента естественных ресурсов Айовы, Айова-Сити; Майк Вурхис из университета штата Небраска и парка вулканических окаменелостей близ Орчарда, штат Небраска; Чак Оффенбур-гер из университета Буэна Висты, Сторм-Лейк, штат Айова; Кен Рэнкорт, руководитель научных исследований обсерватории Маунт Вашингтон, Горхэм, штат Нью-Гэмпшир; Пол Досс, геолог Йеллоустонского национального парка, и его жена Хейди, также сотрудница национального парка; Фрэнк Асаро из Калифорнийского университета в Беркли; Оливер Пейн и Линн Эддисон из Национального географического общества; Джеймс О. Фарлоу из университета Индиана-Пэрдью; Роджер Л. Ларсон, профессор морской геофизики университета Род-Айленда; Джефф Гуинн из газеты «Стар-Телеграм» в Форт-Уорте; Джерри Кастен из Далласа, штат Техас, и сотрудники Исторического общества Айовы в Де-Мойне.

В Австралии: его преподобие Роберт Эванс из Хейзелбрука, штат Новый Южный Уэльс; доктор Джилл Кейни из Австралийского бюро метеорологии; Алан Торн и Виктория Беннет из Австралийского национального университета в Канберре; Луиза Бурке и Джон Хоули из Канберры; Энни Милн из «Сидней морнинг геральд»; Иан Новак, ранее работавший в Геологическом обществе Западной Австралии; Томас X. Рич из Музея штата Виктория; Тим Флэннери, директор Музея Южной Австралии в Аделаиде; Натали Папуорт и Алан Макфадьен из Королевского Тасманского ботанического сада; Хобарт и оказавшие мне большую помощь сотрудники библиотеки штата Новый Южный Уэльс в Сиднее.

Кроме того, Сью Сьюпервиль, заведующая информационным центром Музея Новой Зеландии в Веллингтоне; доктор Эмма Мбуа, доктор Коэн Маес и Джиллани Нгалла из Кенийского национального музея в Найроби.

Я также во многом очень обязан Патрику Джонсон Смиту Джеральду Ховарду, Марианне Велманс, Элисон Таллет, Джиллиан Сомерскейлс, Ларри Финлею, Стиву Рабину, Джеду Маттсу, Кэрол Хитон, Чарльзу Эллиоту, Дэвиду Брайсону Фелисити Брайсон, Дэну Маклину Нику Сазерну, Джеральду Энегельбретсену Патрику Галлахеру Ларри Эшмиду и необычайно приветливому персоналу библиотеки Хоу в Гановере, штат Нью-Гэмпшир.

И, как всегда, я выражаю глубочайшую благодарность моей дорогой терпеливой несравненной жене Синтии.

 

Введение

 

Добро пожаловать. И поздравляю. Я счастлив, что вам это удалось. Знаю, что попасть сюда было нелегко. Вообще-то я полагаю, что это было несколько труднее, чем вы можете подумать.

Начать с того, что для вашего присутствия здесь сегодня нужно было, чтобы триллионы непрестанно перемещающихся атомов каким-то замысловатым и необычайно строго определенным образом собрались вместе, породив вас. Их расположение настолько индивидуально и специфично, что никогда раньше не возникало и будет существовать лишь единожды, в этот раз. В течение многих дальнейших лет (мы надеемся) эти крошечные частицы будут безропотно участвовать в миллиардах своевременных совместных действий, необходимых для того, чтобы сохранить вас невредимым и дать возможность испытать в высшей степени приятное, но обычно недооцениваемое состояние, известное как жизнь.

Зачем атомам так утруждать себя – небольшая загадка. Быть вами – не такое уж благодарное занятие на атомном уровне. При всей их преданности и заботе вашим атомам вообще-то на вас наплевать – в сущности, они даже не знают о вашем существовании. Даже не догадываются, что они сами находятся здесь. Они же, в конце концов, безмозглые частицы и сами по себе не наделены жизнью. (Довольно занятно представить, что если вы приметесь пинцетом расщипывать себя на части, атом за атомом, то получится куча мелкой атомной пыли, причем ни одна пылинка никогда не была живой, но все вместе когда-то были вами.) Однако почему-то на протяжении вашей жизни они будут неукоснительно подчиняться единственному импульсу: сохранять вас такими, как есть.

А плохая новость заключается в том, что атомы непостоянны и время их преданности нам быстротечно – поистине быстротечно. Даже долгая человеческая жизнь достигает всего лишь около 650 тыс часов. И когда эта скромная веха вдруг появляется перед глазами или маячит где-то поблизости, ваши атомы по неизвестным причинам прекращают служить вам, молча демонтируют свои конструкции и расходятся по другим предметам. А с вами всё.

И все же вы можете радоваться, что наше появление на свет вообще случается. Вообще-то говоря, во Вселенной, насколько мы можем утверждать, такого больше нет. Это весьма странно, потому что атомы, которые так охотно сбиваются в кучу, создавая живые существа на Земле, точно такие же, что отказываются делать это в других местах. Что бы там ни было еще, но на уровне химии жизнь на удивление обыденная штука: углерод, водород, кислород и азот, немного кальция, примесь серы, редкие пылинки других самых обычных элементов – ничего такого, чего нельзя найти в любой простой аптеке, – и это все, что нужно. Единственная особенность составляющих вас атомов заключается в том, что они составляют вас. Это, конечно, и есть чудо жизни.

Но независимо от того, порождают атомы жизнь в других уголках Вселенной или нет, они создают множество других вещей; без них не было бы воды, или воздуха, или горных пород, не было бы звезд и планет, далеких газовых облаков и завихряющихся туманностей и любых других вещей, составляющих Вселенную, такую привычно материальную. Атомы настолько многочисленны и непреложны, что мы легко упускаем из виду, что вообще-то в их существовании нет необходимости. Нет закона, требующего, чтобы Вселенная наполнялась малыми частицами материи, или порождала свет и тяготение, или обладала другими физическими свойствами, от которых зависит наше существование. Вообще-то нет никакой необходимости в существовании Вселенной. Долгое время ее не было. Не было атомов, и для них не было Вселенной, по которой они бы свободно плавали. Не было ничего – нигде совсем ничего.

Так что, слава богу, что есть атомы. Но то обстоятельство, что у вас есть атомы и что они охотно собираются именно таким образом, лишь отчасти объясняет, как вы тут появились. Для того чтобы оказаться здесь теперь, в XXI веке, живым и к тому же достаточно сообразительным, чтобы это осознать, вам также надо было стать результатом необычайной череды биологических везений. Выживание на Земле – удивительно хитрое дело. Из миллиардов и миллиардов живых видов, существовавших с начала времен, большинства – как предполагают, 99,99 % – больше здесь нет. Как видите, жизнь на Земле не только коротка, но и пугающе шатка. В том и состоит курьезность нашего существования, что мы обитаем на планете, которая очень хорошо поддерживает жизнь, но еще лучше ее истребляет.

Биологический вид сохраняется на Земле в среднем всего лишь около 4 млн лет, так что если вы хотите оставаться здесь миллиарды лет, то должны быть такими же непостоянными, как составляющие вас атомы. Вы должны быть готовы менять в себе любые характеристики: облик, размер, цвет, видовую принадлежность – словом, все – и делать это неоднократно. Конечно, сказать куда легче, чем сделать, ведь процесс изменений идет наугад. Чтобы из «крошечной капельки первичного бульона» (как говорится в песенке Гилберта и Салливена[1]) стать сообразительным прямоходящим современным человеком, вам потребовалось снова и снова на протяжении чрезвычайно долгого времени и точно вовремя раз за разом менять свои черты и особенности.

 

 

Так что в разные периоды за последние 3,8 млрд лет вы сначала терпеть не могли кислорода, а потом души в нем не чаяли, отращивали плавники и конечности, щеголяли крыльями, откладывали яйца, мелькали в воздухе раздвоенным язычком, были гладкими, были пушистыми, жили под землей, жили на деревьях, были большими, как олень, и маленькими, как мышь, и принимали образ миллионов других созданий. Малейшее отклонение от любого из этих зигзагов эволюции – и теперь вы, возможно, слизывали бы водоросли со стен пещеры, или, как морж, нежились бы где-нибудь на каменистом берегу, или, выдувая воздух из отверстия в затылке, ныряли бы на шестьдесят футов, чтобы набрать полный рот обитающих на дне вкусных червей.

Вам повезло не только в том, что с незапамятных времен вы принадлежите благоприятствуемой эволюционной линии, но вам также в высшей степени – можно сказать, чудесным образом – повезло с собственной родословной. Задумайтесь над тем, что за 3,8 млрд лет, период дольше времени существования земных гор, рек и океанов, все до одного ваши предки с обеих сторон были достаточно привлекательны, чтобы найти себе пару, достаточно здоровы, чтобы дать потомство, и достаточно вознаграждены судьбой и обстоятельствами, чтобы прожить для этого достаточно долго. Никто из имевших к вам отношение предков не был раздавлен, проглочен, не утонул, не умер с голоду не завяз в грязи, не был не ко времени ранен или каким-либо иным образом не отклонился от продиктованного жизнью влечения передать частичку генетического материала нужному партнеру в нужный момент, дабы сохранить единственно возможную последовательность наследуемых сочетаний, которые могли иметь поразительным, хотя и недолговечным конечным результатом – вас.

В книге рассказывается о том, как это произошло, – в частности, о том, как мы совсем из ничего стали чем-то, потом частичка этого чего-то стала нами, а также о том, что было между этим и после. Разумеется, надо охватить уйму вещей, потому книга и называется «Краткая история почти всего на свете», хотя, по правде говоря, она далеко не обо всем. Да и не могла быть. Но если повезет, ближе к концу, может быть, появится ощущение, что обо всем.

Отправным пунктом для меня послужил, каким бы он ни был, школьный учебник естествознания, который был у меня в четвертом или пятом классе. Книжка была стандартным учебником 1950 года – потрепанным, нелюбимым, увесистым, но ближе к началу там была иллюстрация, которая меня просто очаровала: схема, изображавшая внутренность Земли, как она выглядела бы, если вырезать большим ножом и аккуратно вынуть кусок, составляющий примерно четверть целого.

Трудно поверить, что раньше я никогда не видел такой иллюстрации, но, очевидно, не видел, потому что отчетливо помню, что был поражен. Откровенно говоря, полагаю, что первоначальный интерес был вызван собственным воображением. Я представил, как вереницы ничего не подозревавших, мчавшихся на восток по американским равнинным штатам водителей валятся с края неожиданно возникшего обрыва высотой 6,5 тыс км, протянувшегося от середины Америки до Северного полюса. Но постепенно мое внимание переключилось на научную сторону рисунка и до меня дошло, что Земля состоит из отдельных слоев, заканчивающихся в центре раскаленным добела шаром из железа и никеля, таким же горячим, если верить надписи, как поверхность Солнца. Помню, что с удивлением подумал: «Откуда они знают?»

В правильности этих сведений я не сомневался ни на минуту – я все еще склонен доверять мнениям ученых, так же как я доверяю тому, что мне говорят врачи, водопроводчики и другие обладатели сокровенных, недоступных простым смертным знаний, – но до меня, хоть убей, не доходило, каким образом человеческий ум смог дознаться, как выглядит и из чего состоит то, что размещается в тысячах километров под нами, чего не видел ни один глаз, куда не мог проникнуть никакой рентгеновский луч. Для меня это было просто чудом. С той поры я придерживаюсь этого своего представления о науке.

В тот вечер я забрал книгу домой и, забыв об ужине, с нетерпением раскрыл ее – видно, поэтому мать потрогала мой лоб и спросила, здоров ли я, – и принялся читать с первой страницы.

Скажу вам, книга оказалась ничуть не захватывающей. Даже не совсем вразумительной. Прежде всего, она не содержала ответов ни на один из вопросов, которые возбудил рисунок в нормальном пытливом уме. Как получилось, что в середине нашей планеты оказалось Солнце и откуда узнали, насколько там горячо? И если там внутри все горит, почему земля у нас под ногами не горяча на ощупь?

И почему остальное внутреннее пространство не плавится – а может быть, плавится? И когда ядро в конце концов выгорит, не рухнет ли часть Земли в пустоту, оставляя огромную дыру на поверхности? И откуда об этом знают! Как все это выяснили!

Но автор странным образом умалчивал об этих частностях – в общем, умалчивал обо всем, кроме антиклиналей, синклиналей, аксиальных разломов и прочего в том же духе. Словно он хотел сохранить в тайне все интересные вещи, сделав их не постижимыми здравым рассудком. С годами я стал подозревать, что это вовсе не чья-то личная прихоть. Казалось, среди авторов учебников существовал широкий таинственный сговор, дабы изложение ими своего предмета даже на самую малость не приблизилось к области интересного и всегда оставалось не более чем вроде дальнего телефонного вызова, поступившего от чего-то действительно увлекательного.

Теперь-то я знаю, что, к счастью, есть множество научных писателей, из-под пера которых выходят самые доступные, самые захватывающие произведения. Только на одной букве алфавита их сразу трое: Тимоти Феррис, Ричард Форти, Тим Флэннери (не говоря уж о ныне покойном божественном Ричарде Фейнмане), – но, к сожалению, никто из них не написал учебника, которым бы мне довелось пользоваться. Все мои учебники были написаны мужами (всегда мужами), придерживавшимися занятного мнения, что все становится ясным, если выражено формулой, и любопытного заблуждения, что американские дети по достоинству оценят, если главы будут заканчиваться вопросами, над которыми можно будет поразмышлять в свободное время. Так что я вырос с убеждением, что наука – в высшей степени унылая вещь, хотя и подозревал, что так не должно быть. Я не слишком задумывался над всем этим и не предполагал, что могу сам чем-то в этом деле помочь. Так продолжалось довольно долгое время.

Потом, много позднее – думаю, около 4 или 5 лет тому назад, – во время долгого полета через Атлантику, когда я бездумно глядел в иллюминатор на залитый лунным светом океан, меня вдруг – и это было довольно неприятно – осенило, что не знаю простых вещей о единственной планете, на которой собираюсь прожить всю жизнь. Например, я не имел представления о том, почему океаны соленые, а Великие озера нет. Ни малейшего представления. Я не знал, становятся ли океаны со временем солонее или нет и стоит ли мне вообще проявлять беспокойство по этому поводу. (Весьма рад вам сообщить, что до конца 1970-х годов ученые тоже не знали ответов на эти вопросы. Просто предпочитали не говорить об этом во всеуслышанье.)

Соленость океана, разумеется, представляла лишь крошечную частицу моего невежества. Я не знал, что такое протон и что такое протеин, не мог отличить кварк от квазара, не понимал, как геологи могли, взглянув на слои породы в каньоне, определить ее возраст – вообще ничего не знал. Мною исподволь овладело необычное желание немного разобраться в этих вопросах и прежде всего понять, как удалось до всего этого докопаться. Как ученые все это вычисляют, определяют, расшифровывают – это оставалось для меня поражающей воображение загадкой. Откуда они знают, сколько весит Земля или сколько лет горным породам, и что вообще находится там, глубоко в центре? Откуда знают, как и когда начиналась Вселенная и как она тогда выглядела? Откуда знают, что происходит внутри атома? И, коль на то пошло – а по здравом размышлении это, возможно, самое главное, – как получается, что ученые, которые, как часто кажется, знают почти все, не могут предсказать землетрясение или даже сказать, стоит ли брать с собой зонтик, отправляясь в среду на бега?

Так что я решил посвятить часть своей жизни – как оказалось, 3 года – чтению книг и журналов и поиску ангельски терпеливых специалистов, готовых отвечать на уйму необычайно глупых вопросов. Я хотел выяснить, действительно ли нельзя понять и по достоинству оценить – подивиться, даже насладиться чудесами и достижениями науки на уровне, не слишком изобилующем техническими подробностями и не требующем глубоких знаний, но и не совсем на поверхностном.

Таковы были мой замысел и моя надежда, и для этого была задумана настоящая книга. Во всяком случае, нам придется освоить значительный объем сведений в значительно более короткий срок, чем отпущенные нам 650 тыс часов, так что начнем.

 

I ЗАТЕРЯННЫЕ В КОСМОСЕ

 

Все они в одной плоскости. Все вращаются в одном направлении… Понимаете, это совершенно. Это великолепно. Это почти сверхъестественно.

Астроном Джеффри Мэрси о Солнечной системе

 

 

 

КАК СОЗДАТЬ ВСЕЛЕННУЮ

 

Как бы вы ни старались, вы никогда не сможете постичь, насколько мал, насколько пространственно ничтожен протон. Он просто крайне мал.

Протон – безмерно малая часть атома, который и сам-то представляет собой нечто весьма несущественных размеров. Протоны настолько малы, что крошечная точка над буквой «i» содержит их около 50 000 000 000 000 000 штук, что значительно больше числа секунд, составляющих полмиллиона лет. Так что протоны исключительно микроскопичны, если не сказать сильнее.

Теперь представьте, что вам удалось (хотя, конечно, у вас это не получится) сжать один из протонов до одной миллиардной его обычного размера, так, чтобы рядом с ним обычный протон казался громадным. Упакуйте в это крошечное-крошечное пространство примерно столовую ложку вещества. Отлично. Вы готовы положить начало Вселенной.

Я, разумеется, полагаю, что вы желаете создать инфляционную Вселенную. Если вместо нее вы предпочитаете создать более старомодную Вселенную стандартного Большого Взрыва, то вам понадобятся дополнительные материалы. В сущности, вам нужно будет собрать все, что есть в мире, – все до последней пылинки и частицы материи отсюда и до края мироздания, – и втиснуть все это в область столь бесконечно малую, что она вообще не имеет размеров. Это называется сингулярностью.

В обоих случаях готовьтесь к действительно большому взрыву. Наблюдать это зрелище вы, очевидно, пожелаете из какого-нибудь безопасного места. К сожалению, отойти некуда, потому что за пределами сингулярности нет никакого где. Начав расширяться, Вселенная не будет заполнять окружающую пустоту. Единственное пространство, которое существует, – это то, которое создает она сама по мере расширения.

Очень естественно, но неправильно представлять себе сингулярность чем-то вроде беременной точки, висящей в темной безграничной пустоте. Но нет никакой пустоты, нет темноты. У сингулярности нет никакого «вокруг». Нет пространства, которое можно было бы занять, нет никакого места, где бы она находилась. Мы даже не можем задать вопрос, сколько времени она там находится – то ли она только что внезапно возникла, как удачная мысль, то ли была там вечно, спокойно выжидая подходящего момента. Времени не существует. У нее нет прошлого, из которого предстоит выйти.

И вот так, из ничего начинается наша Вселенная.

Одним ослепительным импульсом, в триумфальное мгновение, столь стремительно, что не выразить словами, сингулярность расширяется и обретает космические масштабы, занимая не поддающееся воображению пространство. Первая секунда жизни (секунда, которой многие космологи посвящают жизнь, изучая все более короткие ее мгновения) производит на свет тяготение и другие силы, которые правят в физике. Менее чем за минуту Вселенная достигает в поперечнике миллиона миллиардов километров и продолжает стремительно расти. В этот момент очень жарко, 10 млрд градусов, этого достаточно, чтобы протекали ядерные реакции, которые порождают самые легкие элементы – главным образом водород и гелий с крошечной добавкой лития (примерно один атом на 100 млн). За 3 минуты формируется 98 % всей материи, которая существует сейчас или будет когдалибо существовать. Мы получили Вселенную. Место с удивительными и вдохновляющими перспективами, к тому же очень красивое. И все сделано за время, которое уходит на приготовление сэндвича.

Когда это случилось – вопрос дискуссионный. Космологи давно спорят, произошло ли сотворение мира 10 млрд лет назад, вдвое раньше или же где-то между этими моментами. Общее мнение, похоже, склоняется к величине 13,7 млрд лет, но, как мы увидим дальше, такие вещи до обидного трудно измерить. По существу, все, что можно сказать, это то, что в какой-то неопределенной точке в очень далеком прошлом по неизвестным причинам имел место момент, обозначаемый в науке как t = 0. С него все и началось. Конечно, мы еще очень многого не знаем и часто думаем, будто знаем то, чего на самом деле не знаем, или долгое время так думали. Даже сама идея Большого Взрыва возникла совсем недавно. Она подробно обсуждается с 1920-х годов, когда бельгийский аббат и ученый Жорж Леметр впервые предложил ее в качестве рабочей гипотезы, но по-настоящему активно она не применялась в космологии до середины 1960-х годов, когда двое молодых радиоастрономов случайно сделали удивительное открытие[2].

Их звали Арно Пензиас и Роберт Вильсон. В 1965 году они пытались использовать большую коммуникационную антенну, в Холмделе, штат Нью-Джерси, принадлежавшую Лабораториям Белла, но работу затруднял непрерывный фоновый шум – постоянное шипение, делавшее невозможным проведение экспериментов. Шум был постоянный и однородный. Он приходил из любой точки неба, день и ночь, в любое время года. Целый год молодые астрономы делали все возможное, чтобы найти источник шума и устранить его. Они протестировали каждую электрическую цепь. Они перебрали аппаратуру, проверили контуры, перекрутили провода, зачистили контакты. Они забрались на тарелку антенны и заклеили лентой каждый шов, каждую заклепку. Они вернулись туда с метлами и жесткими щетками и тщательно вычистили, как писали позднее в научной статье, «белое диэлектрическое вещество», которое в обиходе называют птичьим пометом. Ничто не помогало.

Им было невдомек, что всего в 50 км от них, в Принстонском университете, группа ученых во главе с Робертом Дикке билась над тем, как найти ту самую вещь, от которой они так усердно старались избавиться. Принстонские исследователи разрабатывали идею, выдвинутую в 1940-х годах астрофизиком Георгием Гамовым, уроженцем России: что если заглянуть достаточно глубоко в космос, то можно обнаружить некое фоновое космическое излучение, оставшееся от Большого Взрыва. Гамов рассчитал, что к моменту, когда это излучение пересечет космические просторы и достигнет Земли, оно будет представлять собой микроволны[3]. Немного позднее он даже предложил инструмент, который мог бы их зарегистрировать: антенну компании «Белл» в Холмделе. К сожалению, ни Пензиас, ни Вильсон, ни кто-либо из членов принстонской группы не читал эту статью Гамова.

Шум, который слышали Пензиас и Вильсон, конечно же, был шумом, который теоретически предсказал Гамов. Они обнаружили край Вселенной, или, по крайней мере, ее видимой части, на расстоянии более 100 миллиардов триллионов километров. Они «видели» первые фотоны – древнейший свет Вселенной[4], – хотя время и расстояние превратило их, как и предсказывал Гамов, в микроволны. В книге «Расширяющаяся Вселенная» Алан Гут приводит аналогию, помогающую представить это открытие в перспективе. Если считать, что вы всматриваетесь в глубины Вселенной, глядя вниз с сотого этажа Эмпайр-Стейт билдинг (где сотый этаж соответствует нашему времени, а уровень улицы – моменту Большого Взрыва), то во время открытия Вильсона и Пензиаса самые отдаленные галактики были обнаружены в районе шестидесятых этажей, а самые далекие объекты – квазары – где-то в районе двадцатых. Открытие Пензиаса и Вильсона довело наше знакомство с видимой Вселенной до высоты в полдюйма от пола цокольного этажа.

Все еще не зная о причине шума, Вильсон с Пензиасом позвонили в Принстон Дикке и описали ему свою проблему, надеясь, что он подскажет решение. Дикке сразу понял, что обнаружили эти двое молодых людей. «Да, ребята, нас обошли», – сказал он своим коллегам, вешая трубку.

Вскоре Astrophysical Journal [5] опубликовал две статьи: одну Пензиаса и Вильсона, описывавшую их опыт с регистрацией шипения, другую – группы Дикке, объяснявшую его природу. Хотя Пензиас и Вильсон не искали фоновое космическое излучение, не знали, что это такое, когда обнаружили его, а в своей статье не объяснили его природу, в 1978 году они получили Нобелевскую премию в области физики. Принстонским исследователям досталось лишь сочувствие. Согласно Деннису Овербаю[6], автору книги «Одинокие сердца в космосе», ни Пензиас, ни Вильсон полностью не понимали значения того, что открыли, пока не прочли об этом в «Нью-Йорк таймс». Между прочим, помехи от космического фонового излучения – это то, что все мы знаем по опыту. Настройте свой телевизор на любой канал, где нет трансляции, и около одного процента прыгающих электростатических помех, которые вы наблюдаете на экране, будут связаны с этими древними следами Большого Взрыва. В следующий раз, когда вы будете жаловаться, что на экране ничего нет, вспомните, что вы всегда имеете возможность наблюдать рождение Вселенной.

Хотя все называют это Большим Взрывом, многие книги предостерегают нас от того, чтобы представлять его как взрыв в обычном смысле. Это скорее было внезапное значительное расширение колоссальных масштабов. Так что же его вызвало?

Одна из точек зрения состоит в том, что сингулярность была реликтом более ранней сколлапсировавшей Вселенной, что наша Вселенная – всего лишь одна из вечного круговорота вселенных, расширяющихся и сжимающихся, подобно пневматической камере кислородного аппарата. Другие объясняют Большой Взрыв так называемым «ложным вакуумом», «скалярным полем» или «вакуумной энергией» – неким свойством или сущностью, которая каким-то образом привнесла определенную неустойчивость в имевшее место небытие. Кажется, что получить нечто из ничего невозможно, но факт состоит в том, что когда-то не было ничего, а теперь налицо Вселенная, и это служит очевидным доказательством подобной возможности. Быть может, наша Вселенная – всего лишь часть множества более крупных вселенных, располагающихся в разных измерениях, и Большие Взрывы происходят постоянно и повсюду. Или, возможно, пространство и время имели до Большого Взрыва совершенно иные формы, слишком чуждые нашему пониманию, и что Большой Взрыв – это своего рода переходный этап, когда Вселенная из непостижимой для нас формы переходит в форму, которую мы почти можем понять. «Все это очень близко к религиозным вопросам», – говорил в 2001 году корреспонденту «Нью-Йорк таймс» космолог Андрей Линде[7].

Теория Большого Взрыва – не о самом взрыве, а о том, что произошло после взрыва. Причем в основном вскоре после взрыва. Произведя уйму расчетов и тщательных наблюдений на ускорителях элементарных частиц, ученые считают, что могут заглянуть во время спустя всего 10-43 секунды с момента творения, когда Вселенная была еще настолько мала, что разглядеть ее можно было только в микроскоп. Мы не должны падать в обморок от каждого встречающегося нам необычного числа, но, пожалуй, время от времени стоит ухватиться за одно из них, хотя бы для того, чтобы напомнить об их непостижимых и потрясающих значениях. Так, 10-43 – это 0,000 000 000 000 000 000 000 000 000 000 000 000 000 000 1, или одна десяти миллионно триллионно триллионно триллионная секунды*.

--

* (Несколько слов о научной нотации. Поскольку очень большие числа тяжело писать и почти невозможно прочесть, ученые применяют сокращения, использующие степени десятки. В этих обозначениях, например, 10 000 000 000 записывается как 1010, а 6 500 000 превращается в 6,5 х 106. Принцип очень прост – он основан на свойстве умножения на десять: 10 х 10 (то есть 100) становится 102; 10 х 10 х 10 (или 1000) – 103 и так далее до бесконечности. Маленький верхний индекс означает число нулей, следующих за крупным основным числом. Обозначения со знаком «минус» имеют зеркальный смысл: число сверху указывает на количество позиций справа от десятичной запятой (например, 10-4 означает 0,0001). Хотя я приветствую это правило, меня по-прежнему поражает, как кто-то, глядя на запись «1,4 х 109 км3», сразу видит, что это означает 1,4 миллиарда кубических километров, и в не меньшей мере удивляет, что они предпочитают первое последнему в печати (особенно в книге для широкой публики, откуда был взят этот пример). Исходя из того, что многие читатели, как и я, не сильны в математике, я буду пользоваться такими обозначениями умеренно, хотя иногда их не избежать, особенно в главе, касающейся предметов космического масштаба.)

 

Большая часть того, что мы знаем, или считаем, что знаем, о первых моментах Вселенной, вытекает из концепции, получившей название инфляционной теории, которая впервые была предложена на обсуждение в 1979 году специалистом по элементарным частицам младшим научным сотрудником Стэнфордского университета Аланом Гутом, ныне работающим в Массачусетском технологическом институте. Ему было тогда тридцать два года, и, по собственному признанию, он никогда раньше ничем подобным всерьез не занимался. Возможно, он никогда бы и не выдвинул свою замечательную теорию, если бы случайно не попал на лекцию о Большом Взрыве, прочитанную никем иным, как Робертом Дикке. Лекция пробудила у Гута интерес к космологии, в особенности к вопросу о рождении Вселенной.

В итоге появилась инфляционная теория, согласно которой Вселенная претерпела внезапное поражающее воображение расширение. Она раздувалась – фактически убегая от самой себя, удваиваясь в размерах каждые 10-34секунды. Весь эпизод, возможно, продолжался не более 10-30 секунды – это одна миллионно миллионно миллионно милионно миллионная доля секунды, – но он превратил Вселенную, которая уместилась бы в вашей руке, в нечто по крайней мере в 10 000 000 000 000 000 000 000 000 раз большее. Теория инфляции объясняет появление во Вселенной ряби и завихрений, которые сделали наш мир таким, как мы его знаем. Без них не возникло бы сгустков материи, а значит и звезд, и были бы только газ и вечная тьма.

Согласно теории Гута, за одну десятимиллионно триллионно триллионно триллионную секунды возникла гравитация. Еще через один смехотворно короткий период времени к ней присоединился электромагнетизм, а также сильное и слабое ядерные взаимодействия – основные игрушки физиков. Мгновением позже к ним добавились скопления элементарных частиц – игрушки этих игрушек. Совершенно из ничего вдруг возникли тучи фотонов, протонов, электронов, нейтронов и множество других частиц в количестве где-то от 1079до 1089 каждого вида. Примерно так это описывает общепринятая теория Большого Взрыва.

Представить себе такие огромные числа, конечно, нельзя. Достаточно просто знать, что в одно шумное мгновение нас одарили такой огромной Вселенной – не меньше сотни миллиардов световых лет в поперечнике, согласно теории, хотя, возможно, и намного больших размеров вплоть до бесконечности – и эта Вселенная идеально приспособлена для создания звезд, галактик и других сложных систем.

Что удивительно, с нашей точки зрения, так это то, как удачно все это обернулось для нас. Если бы Вселенная оказалась немного иной – если бы гравитация была чуть сильнее или слабее, если бы расширение протекало чуть медленнее или быстрее, – тогда, возможно, не было бы устойчивых элементов, из которых мы с вами состоим, и земли, по которой мы ходим. Окажись гравитация немного сильнее, и Вселенная обрушилась бы внутрь себя, как плохо поставленная палатка, не достигнув надлежащих размеров, плотности и состава. Но будь гравитация слабее, не возникло бы конденсаций материи, и Вселенная навсегда осталась бы унылой рассеянной пустотой.

В этом одна из причин того, почему некоторые специалисты считают, что может быть множество других Больших Взрывов – возможно, триллионы и триллионы, – разбросанных по громаде вечности, а мы существуем именно в этой конкретной Вселенной потому, что можем существовать только здесь.[8] Как однажды заметил Эдвард Трайон[9] из Колумбийского университета: «В ответ на вопрос, почему это произошло, я предлагаю скромное соображение, что наша Вселенная – просто одна из таких, которые время от времени появляются». Гут к этому добавляет: «Хотя рождение Вселенной может быть крайне маловероятным, Трайон подчеркивал, что никто не считал неудавшихся попыток».

Британский Королевский астроном Мартин Рис считает, что существует множество, возможно, бесконечное число вселенных – все с разными свойствами в различных сочетаниях, и что мы просто живем в одной из них, где вещи сочетаются таким образом, который позволяет нам существовать. Он проводит аналогию с очень большим магазином одежды: «Если там широкий ассортимент, вас не удивит, что вы найдете подходящий костюм. Если существует множество вселенных, каждая из которых управляется своим набором параметров, то среди них будет хотя бы одна, в которой реализовался особый набор параметров, подходящий для жизни. Мы находимся в такой Вселенной».

Рис утверждает, что имеется 6 величин, которые в основных чертах определяют свойства нашей Вселенной, и, если любое из этих значений хотя бы немного изменилось, дела пошли бы совсем не так, как теперь. Например, для существования Вселенной в том виде, как она есть, требуется, чтобы водород превращался в гелий строго определенным и весьма неторопливым способом – а именно, чтобы при этом семь тысячных долей массы переходили в энергию. Слегка снизьте это значение – скажем, с 0,007 до 0,006, – и превращения не произойдет: Вселенная будет содержать только водород и ничего больше. Слегка повысьте его – до 0,008 – и реакции пошли бы так бурно, что водород уже давно закончился бы. В обоих случаях малейшее изменение значений – и той Вселенной, какую мы знаем и какая нам нужна, просто не было бы.

Следует сказать, что пока все идет как надо. Но в долгосрочной перспективе гравитация может оказаться немного сильнее, чем надо; однажды она, возможно, остановит расширение Вселенной и заставит ее сжиматься, пока снова не втиснет ее в сингулярность, чтобы, возможно, начать весь процесс заново. С другой стороны, гравитация может оказаться слишком слабой, и в этом случае Вселенная будет расширяться вечно, пока все не окажется настолько далеко друг от друга, что не останется никакой возможности для взаимодействия материи, и Вселенная станет очень просторным, но инертным и безжизненным местом. Третья возможность состоит в том, что гравитация окажется идеально настроенной – у космологов для этого есть термин «критическая плотность», в этом случае тяготение удержит Вселенную как раз в нужных размерах, чтобы дать возможность сложившемуся порядку вещей продолжаться вечно.[10] Космологи в светлые моменты иногда называют это тонкой подстройкой параметров – имея в виду, что все, дескать, правильно. (Для сведения: эти 3 возможные вселенные известны соответственно как закрытая, открытая и плоская.)

А теперь вопрос, который в какой-то момент возникал у каждого из нас: что будет, если добраться до края Вселенной и, так сказать, высунуть голову за занавес? Где окажется голова, если она больше не будет во Вселенной? Что мы увидим за ее пределами? Ответ неутешительный: вы никогда не доберетесь до края Вселенной. И не потому даже, что добираться туда слишком долго – хотя это, конечно, так, – а потому, что если бы вы двигались все дальше и дальше по прямой линии, упрямо и бесконечно долго, то все равно никогда не достигли бы внешней границы. Вместо этого вы вернулись бы туда, откуда отправились (тут вы, повидимому, упали бы духом и отказались от этой затеи). Объясняется это тем, что Вселенная изгибается особым образом, который невозможно как следует представить, в соответствии с теорией относительности Эйнштейна (о ней мы в свое время поговорим). А пока достаточно знать, что мы вовсе не плаваем в каком-то огромном раздувающемся пузыре. Пространство изогнуто таким образом, что остается безграничным, но конечным.[11] Строго говоря, неправильно даже утверждать, что пространство расширяется, потому что, как отмечает лауреат Нобелевской премии физик Стивен Вайнберг,[12] «солнечные системы и галактики не расширяются, и само пространство не расширяется». Галактики скорее разбегаются. Все это, похоже, бросает вызов интуиции. Или, как однажды замечательно отметил известный биолог Дж. Б. С. Холдейн:[13] «Вселенная не только более необычна, чем мы предполагаем; она необычнее, чем мы можем предположить».

Для объяснения кривизны пространства обычно приводится следующая аналогия – попробовать представить жителя вселенной плоских поверхностей, который никогда не видел шара, и попал на Землю. Сколько бы он ни брел по поверхности планеты, он так и не обнаружил бы края. В конце концов он вернулся бы к тому месту, откуда начал путь, окончательно сбитым с толку. Так вот, в отношении космоса мы оказываемся в таком же положении, как и наш озадаченный флэтладец,[14] только нас приводит в смущение большее число измерений.

Также, какие существует места, где можно найти край Вселенной, нет и центра, где можно встать и сказать: «Вот отсюда все началось. Вот самый центр всего сущего». Мы все в центре всего этого. Хотя, в действительности, мы не знаем этого наверняка; не можем доказать математически. Ученые просто исходят из того, что мы не можем быть центром Вселенной – вы только вообразите себе, что бы это означало, – и потому явления должны быть одинаковыми для всех наблюдателей во всех местах. И все же точно мы этого не знаем.

Для нас Вселенная простирается на расстояние, которое покрыл свет за миллиарды лет со времени ее образования. Эта видимая Вселенная – Вселенная, которую мы знаем и о которой можем говорить, – имеет в поперечнике порядка миллиона миллионов миллионов миллионов (1 000 000 000 000 000 000 000 000 = 1024) километров. Но согласно большинству теорий, Вселенная в целом – метавселенная, как ее иногда называют – еще намного просторнее. Рис считает, что число световых лет в обхвате этой большей, незримой Вселенной выражалось бы не «десятью нулями, даже не сотней нулей, а миллионами». Словом, пространство намного больше, чем вы можете представить, не утруждая себя попытками достичь чего-то еще более потустороннего.

Долгое время теория Большого Взрыва имела один бросающийся в глаза пробел, беспокоивший множество людей, а именно, она не могла объяснить, как здесь оказались мы. Хотя 98 % существующей материи создано Большим Взрывом, эта материя состояла исключительно из легких газов: гелия, водорода и лития, о чем мы уже упоминали. Ни одной частицы тяжелых элементов, так необходимых для нашего существования – углерода, азота, кислорода и всех остальных, – не возникло из газового котла творения. Однако – и в этом состоит затруднение, – чтобы выковать эти тяжелые элементы, требуется тепло и энергия, сравнимые с самим Большим Взрывом.

Но был всего лишь один Большой Взрыв, и он не произвел эти элементы. Тогда откуда же они взялись? Интересно, что человеком, нашедшим ответ на этот вопрос, был космолог, который от души презирал теорию Большого Взрыва и само это название придумал в насмешку над ней.

Вскоре мы поговорим о нем подробнее, но, прежде чем мы вернемся к вопросу о том, как мы здесь оказались, хорошо бы несколько минут поразмыслить над тем, где в точности находится это «здесь».

 

ДОБРО ПОЖАЛОВАТЬ В СОЛНЕЧНУЮ СИСТЕМУ

 

В наши дни астрономы могут делать самые поразительные вещи. Если бы кто-нибудь чиркнул на Луне спичкой, они могли бы разглядеть эту вспышку. По самым незначительным пульсациям отдаленных звезд они могут сделать выводы о размерах, свойствах и даже о потенциальной обитаемости планет, слишком далеких, чтобы их разглядеть, – настолько далеких, что понадобилось бы полмиллиона лет, чтобы попасть туда на межпланетном корабле. Своими радиотелескопами они могут улавливать излучения настолько слабые, что общее количество энергии, полученной из-за пределов Солнечной системы, с тех пор как начались радионаблюдения (в 1951 году) на всех инструментах, взятых вместе, составляет, по словам Карла Сагана,[15] «меньше, чем энергия одной упавшей на землю снежинки».

 

Словом, во Вселенной происходит не так уж много такого, что астрономы не могли бы при желании обнаружить. Тем более удивительно, что до 1978 года никто не замечал, что у Плутона есть спутник. Летом того года молодой астроном Джеймс Кристи из обсерватории военно-морских сил США во Флэгстаффе, штат Аризона, просматривая фотографические изображения Плутона, вдруг заметил там что-то еще – что-то размазанное, неясное, но определенно иное, чем сам Плутон. Посоветовавшись с коллегой, Робертом Харрингтоном, он пришел к выводу, что это спутник. И не какой-нибудь спутник. Относительно своей планеты он был самым большим спутником в Солнечной системе.

В действительности, это был своего рода удар по статусу Плутона как планеты, статусу, который никогда не был особенно твердым. Поскольку место, занимаемое спутником, и место, занимаемое Плутоном, раньше считалось одним целым, теперь это означало, что Плутон намного меньше, чем полагали прежде, – даже меньше Меркурия. Мало того, в Солнечной системе 7 спутников, включая нашу Луну, превосходят Плутон по размеру.

Естественно, возникает вопрос, почему в нашей собственной Солнечной системе так долго не могли найти этот спутник. Ответ связан отчасти с тем, куда астрономы нацеливают свои инструменты, отчасти с тем, для каких целей они сконструированы, а отчасти с особенностями самого Плутона. Но главное – это куда направлены инструменты. По словам астронома Кларка Чапмана:[16] «Большинство людей думает, что астрономы приходят по ночам в обсерватории и разглядывают небо. Это не так. Почти все имеющиеся в мире телескопы предназначены вглядываться в крошечные участки неба, чтобы увидеть вдали квазар, или охотиться за черными дырами, или подробно рассмотреть отдаленную галактику. Единственная существующая сеть телескопов, сканирующих небо, сконструирована и построена военными».[17]

Мы избалованы рисунками художников и представляем себе четкость и разрешение снимков такими, каких на самом деле в астрономии нет. Плутон на снимке Кристи тусклый и размытый, как клочок космической ваты, а его спутник совсем не похож на романтически подсвеченный, резко очерченный шар, какой вы увидели бы на рисунке в National Geographic, скорее это еле заметный невнятный намек на еще одно мутное пятнышко. Оно было до того неотчетливым, что понадобилось еще семь лет, чтобы хоть кто-то снова нашел спутник и тем самым независимо подтвердил его существование.

Занятно, что Кристи сделал свое открытие во Флэгстаффе, ибо именно здесь в 1930 году был впервые обнаружен сам Плутон. Это значительное для астрономии событие в значительной мере является заслугой астронома Персиваля Лоуэлла. Лоуэлл, происходивший из одной из старейших и богатейших бостонских семей (той самой, о которой поется в известной песенке, что Бостон – это родина бобов и чудаков, где Лоуэллы разговаривают только с Кэботами, а Кэботы только с Богом), финансировал создание знаменитой обсерватории, носящей его имя, но самую неизгладимую память о себе он оставил благодаря гипотезе о том, что Марс покрыт каналами, построенными трудолюбивыми марсианами, с целью переброски воды из районов полюсов к засушливым, но плодородным землям ближе к экватору.[18]

Второе твердое убеждение Лоуэлла состояло в том, что где-то за Нептуном должна существовать еще неоткрытая девятая планета, окрещенная планетой X. В своем убеждении Лоуэлл исходил из неправильностей, которые он обнаружил в орбитах Урана и Нептуна, и посвятил последние годы жизни попыткам отыскать газовый гигант, который, как он был уверен, там находился. К несчастью, в 1916 году Лоуэлл скоропостижно скончался, отчасти из-за подорвавших его здоровье упорных поисков. Поиски прервались, а наследники Лоуэлла перессорились из-за его имущества. Однако в 1929 году, отчасти для того, чтобы отвлечь внимание от эпопеи с марсианскими каналами – к тому времени она уже серьезно пятнала репутацию, – правление Лоуэлловской обсерватории решило возобновить поиски и наняло для этого молодого канзасца Клайда Томбо.

Томбо формально не имел астрономического образования, но отличался старательностью и сметливостью, и после года терпеливых поисков ему наконец удалось обнаружить Плутон – еле видимую светлую точку среди сверкающих россыпей звезд. Это была удивительная находка, тем более поразительная, что представления Лоуэлла о занептуновой планете оказались полностью ошибочными. Томбо сразу увидел, что новая планета совсем не похожа на огромный газовый шар, о котором говорил Лоуэлл, – но все оговорки о природе новой планеты, которые высказывал сам Томбо или кто-то другой, тут же отметались прочь в сенсационной горячке, сопровождавшей любую важную новость в тот легко поддающийся возбуждению век. Это была первая открытая американцем планета, и никто не хотел думать о том, что вообще-то это всего лишь далекая от нас ледышка. Ее назвали Плутоном, отчасти, по крайней мере, потому, что первые две буквы составляли монограмму из инициалов Лоуэлла. Лоуэлла повсюду посмертно прославляли как величайшего гения, а Томбо был почти забыт, о нем помнили только в среде астрономов, изучающих планеты, которые глубоко его уважают.

Некоторые астрономы по-прежнему считают, что где-то там, возможно, существует и планета X – настоящая громадина, возможно, в десять раз больше Юпитера, но она так далека от нас, что пока остается невидимой. (Она получала бы так мало солнечного света, что ей было бы почти нечего отражать). Есть мнение, что она может оказаться не обычной планетой, вроде Юпитера и Сатурна, – для этого она находится слишком далеко, поговаривают о величинах около 7 трлн км, – а скорее подобна недоделанному Солнцу. Большинство звездных систем в космосе являются двойными (состоящими из двух звезд), и это делает наше одинокое Солнце немного странным.

Что касается самого Плутона, то никто точно не знает, каковы его размеры,[19] из чего он состоит, какая у него атмосфера и что он вообще собой представляет. Многие астрономы считают, что это вовсе не планета, а всего лишь самый крупный объект, найденный до сих пор в зоне космических обломков, известной как пояс Койпера.[20] На самом деле пояс Койпера был теоретически предсказан в 1930 году астрономом Ф. С. Леонардом, однако он носит имя работавшего в Америке голландца Джерарда Койпера, который развил эту идею. Пояс Койпера служит источником так называемых короткопериодических комет – тех, которые появляются сравнительно регулярно. Самая известная среди них – комета Галлея. Ведущие более уединенный образ жизни долгопериодические кометы (среди них недавние гостьи кометы Хейла – Боппа и Хиякутаке) появляются из намного более далекого облака Оорта, о котором разговор еще впереди.

Несомненно, Плутон ведет себя не совсем так, как другие планеты. Он не только маленький и тусклый, но также настолько непостоянен в своих движениях, что никто точно не скажет, где Плутон будет находиться через столетие.[21] Тогда как орбиты других планет находятся более или менее в одной плоскости, орбита Плутона наклонена на 17 градусов подобно щегольски сдвинутой набекрень шляпе. Его орбита настолько необычна, что на каждом обороте своего одинокого кружения вокруг Солнца он заметное время находится к нам ближе, чем Нептун. Большую часть 1980-х и 1990-х годов именно Нептун был самой отдаленной планетой Солнечной системы. Только 11 февраля 1999 года Плутон вернулся во внешний ряд, где проведет теперь 228 лет.

Так что даже если Плутон действительно планета, то определенно весьма странная. Совсем крошечная: ее масса составляет всего четверть процента массы Земли. Если положить Плутон на территорию Соединенных Штатов, то он не займет и половины площади сорока восьми южных штатов. Одно это является крайней аномалией; значит, наша планетная система состоит из четырех внутренних твердых планет, четырех внешних газовых гигантов и крошечного одинокого ледяного шарика. Однако есть все основания полагать, что в той части пространства мы скоро начнем находить другие, еще более крупные ледяные шары. И тогда у нас возникнут проблемы. После того как Кристи обнаружил спутник Плутона, астрономы стали активнее разглядывать этот сектор космоса, и к началу декабря 2002 года нашли еще более 600 транснептуновых объектов, или плутино,[22] каких еще называют. Один из них, названный Варуной, почти такого же размера, как спутник Плутона. Теперь астрономы считают, что число таких объектов может составлять миллиарды. Трудность в том, что многие из них крайне темные. Как правило, их альбедо, то есть отражающая способность, составляет всего 4 %, примерно как у куска древесного угля. К тому же эти куски угля находятся от нас на расстоянии более 6 млрд км.

А как, в сущности, это далеко? Да почти не поддается воображению. Видите ли, пространство просто громадно, если не сказать чудовищно. Чтобы осознать это, да и просто ради развлечения, представьте, что мы собираемся совершить путешествие на ракетном корабле. Мы полетим не очень далеко – всего лишь до края нашей Солнечной системы, – просто чтобы определиться, насколько велик космос и какую малую его часть занимаем мы.

Теперь плохая новость: боюсь, что к ужину мы домой не вернемся. Даже при скорости света (300 000 км/сек), чтобы попасть на Плутон, потребовалось бы 7 часов.[23] Но мы, конечно, не можем путешествовать с такой скоростью. Придется лететь со скоростью межпланетного корабля, а это гораздо медленнее. Самая высокая скорость, достигнутая пока созданными человеком предметами, это скорость космических аппаратов «Вояджер-1» и «Вояджер-2», которые сейчас улетают от нас со скоростью 56 000 км/час.[24]

Основанием для запуска «Вояджеров» именно в те сроки (август и сентябрь 1977 года) послужило то, что Юпитер, Сатурн, Уран и Нептун выстроились тогда так, как бывает только раз в 175 лет. Это позволило обоим «Вояджерам» использовать технику гравитационных маневров, когда аппарат поочередно перелетает от одного газового гиганта к другому, будто подстегиваемый космическим кнутом. Но даже при этом им потребовалось девять лет, чтобы достичь Урана, и двенадцать, чтобы пересечь орбиту Плутона. А хорошая новость заключается в том, что если мы подождем до января 2006 года (когда предварительно намечен запуск к Плутону аппарата НАСА «Новые Горизонты»), то сможем воспользоваться благоприятным расположением Юпитера плюс определенными успехами в области техники и попадем туда где-то за 10 лет[25] – хотя, боюсь, возвращаться домой придется значительно дольше. Короче, в любом случае путешествие выйдет довольно долгим.

Итак, первое, что вы, вероятно, уяснили, так это то, что космос весьма удачно назван (одно из значений английского «space» – пустое место. – Прим. перев.) и ужасно беден событиями. Наша Солнечная система, пожалуй, самое оживленное место на триллионы миль вокруг, однако все, что мы видим в ней – Солнце, планеты со спутниками, миллиард или около того кувыркающихся камней пояса астероидов, кометы и разные другие плавающие обломки, – занимает менее одной триллионной части имеющегося пространства. Вы также легко поймете, что ни на одной из встречавшихся вам карт Солнечной системы масштаб даже отдаленно не соответствует реальному. На большинстве школьных схем планеты изображены рядом, вплотную одна к другой – на многих иллюстрациях планеты-гиганты даже отбрасывают друг на друга тени, – но это неизбежный обман, дабы поместить их все на одном листе бумаги. В действительности Нептун расположен не чуть позади, а далеко позади Юпитера – в пять раз дальше, чем сам Юпитер от нас, так далеко, что получает лишь 3 % солнечного света, получаемого Юпитером.

Расстояния эти таковы, что на практике невозможно изобразить Солнечную систему с соблюдением масштаба.

Даже если сделать в учебнике большую раскладывающуюся вклейку или просто взять самый длинный лист бумаги для вывесок, этого все равно будет недостаточно. Если на масштабной схеме Солнечной системы Землю изобразить размером с горошину, Юпитер будет находиться на расстоянии 300 м, а Плутон в 2,5 км (и будет размером с бактерию, так что в любом случае вы не сможете его разглядеть[26]). В том же масштабе ближайшая звезда, Проксима Центавра, будет находиться в 16 000 км от нас. Если даже вы ужмёте все до такой степени, что Юпитер станет размером с точку в конце этого предложения, а Плутон не больше молекулы,[27] то и в этом случае Плутон будет находиться на расстоянии больше десяти метров.

Так что Солнечная система действительно огромна. Когда мы достигнем Плутона, то окажемся так далеко, что Солнце – наше родное, теплое, дающее нам загар и жизнь солнышко – сожмется до размера булавочной головки. Немного больше яркой звезды.[28] В такой навевающей тоску пустоте вы начнете понимать, почему даже весьма значительные предметы, например спутник Плутона, ускользали от внимания. В этом смысле Плутон не одинок. До полета «Вояджеров» считалось, что у Нептуна два спутника; «Вояджер» нашел еще шесть. Когда я был мальчишкой, считалось, что в Солнечной системе имеется тридцать спутников. Теперь их насчитывается по меньшей мере 90, примерно треть из них обнаружена за последние 10 лет. Отсюда следует, что когда мы судим о Вселенной в целом, надо помнить, что мы по существу не знаем, что происходит в нашей собственной Солнечной системе.

А теперь еще одна вещь, которую следует учесть: пролетая мимо Плутона, мы лишь пролетаем мимо Плутона. Если заглянете в план полета, то увидите, что его цель – путешествие к краю Солнечной системы, но боюсь, что мы еще не добрались до него. Плутон может быть последним объектом, отмеченным на школьных схемах, но сама система здесь не кончается. На самом деле ее конца еще даже не видно. Мы не доберемся до края Солнечной системы, пока не пройдем сквозь облако Оорта, огромное царство кочующих комет, а мы не достигнем облака Оорта раньше, чем – прошу прощения – через 10 тысяч лет. Плутон отмечает всего лишь одну 50-тысячную пути, а вовсе не край Солнечной системы, как бесцеремонно указывается на школьных схемах.[29]





Поделиться с друзьями:


Дата добавления: 2016-10-22; Мы поможем в написании ваших работ!; просмотров: 347 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наука — это организованные знания, мудрость — это организованная жизнь. © Иммануил Кант
==> читать все изречения...

796 - | 687 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.