Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Математическая статистика — наука о математических методах систематизации и использования статистиче­ских данных для решения научных и практических задач




Математическая статистика

Методы математической статистики позволяют систематизи­ровать и оценивать экспериментальные данные, которые рассматриваются как случайные величины.

Основные понятия математической статистики

В главе 2 были рассмотрены некоторые понятия и закономерности, которым подчинены массовые случайные явления. Одной из практических задач, связанных с этим, является создание методов отбора данных (статистические данные) из большой сово­купности и их обработки. Такие вопросы рассматриваются в математической статистике.

Математическая статистика — наука о математических методах систематизации и использования статистиче­ских данных для решения научных и практических задач.

Ма­тематическая статистика тесно примыкает к теории вероятностей и базируется на ее понятиях. Однако главным в математической статистике является не распределение случайных величин, а ана­лиз статистических данных и выяснение, какому распределению они соответствуют.

Предположим, что необходимо изучить множество объектов по какому-либо признаку. Это возможно сделать, либо проведя сплош­ное наблюдение (исследование, измерение), либо не сплошное, выбо­рочное.

Выборочное, т. е. неполное, обследование может оказаться предпочтительнее по следующим причинам. Во-первых, естест­венно, что обследование части менее трудоемко, чем обследование целого; следовательно, одна из причин — экономическая. Во-вто­рых, может оказаться и так, что сплошное обследование просто нереально. Для того чтобы его провести, возможно, нужно унич­тожить всю исследуемую технику или загубить все исследуемые биологические объекты. Так, например, врач, имплантирующий электроды в улитку для кохлеарного протезирования (см. § 6.5), должен иметь вероятностные представления о расположении улитки слухового аппарата. Казалось бы, наиболее достоверно та­кие сведения можно было получить при сплошном патологоанатомическом вскрытии всех умерших с производством соответствую­щих замеров. Однако достаточно собрать нужные сведения при выборочных измерениях.

Большая статистическая совокупность, из которой отбирается часть объектов для исследования, называется генеральной сово­купностью, а множество объектов, отобранных из нее, — выбо­рочной совокупностью, или выборкой.

Свойство объектов выборки должно соответствовать свойству объектов генеральной совокупности, или, как принято говорить, выборка должна быть представительной (репрезентативной). Так, например, если целью является изучение состояния здо­ровья населения большого города, то нельзя воспользоваться вы­боркой населения, проживающего в одном из районов города. Ус­ловия проживания в разных районах могут отличаться (различ­ная влажность, наличие предприятий, жилищных строений и т. п.) и, таким образом, влиять на состояние здоровья. Поэтому выбор­ка должна представлять случайно отобранные объекты.

Если записать в последовательности измерений все значения величины х в выборке, то получим простой статистический ряд. Например, рост мужчин (см): 170, 169,.... Та­кой ряд неудобен для анализа, так как в нем нет последователь­ности возрастания (или убывания) значений, встречаются и по­вторяющиеся величины. Поэтому целесообразно ранжировать ряд, например, в возрастающем порядке значений и указать их повторяемость. Тогда статистическое распределение выборки:171, 172, 172, 168,

 

(3.1)

 

Здесь xi — наблюдаемые значения признака (варианта); ni — число наблюдений варианты xi (частота); рi* — относительная частота.


Общее число объектов в выборке (объем выборки)

всего k вариант. Статистическое распределение — это совокуп­ность вариант и соответствующих им частот (или относительных частот), т. е. это совокупность данных 1-й и 2-й строки или 1-й и 3-й строки в (3.1).

В медицинской литературе статистическое распределение, со­стоящее из вариант и соответствующих им частот, получило на­звание вариационного ряда.

Наряду с дискретным (точечным) статистическим распределе­нием, которое было описано, используют непрерывное (интер­вальное) статистическое распределение:

 

 

(3.2)

 

Здесь xi-1, xi - i- йинтервал, в котором заключено количественное значение признака; ni — сумма частот вариант, попавших в этот интервал; р*i — сумма относительных частот.

В качестве примера дискретного статистического распределения укажем массы новорожденных мальчиков (кг) и частоты (табл. 5).

Таблица 5

 
 

 


 

Общее количество мальчиков (объем выборки)

 

(3.3)

Можно это распределение представить и как непрерывное (интер­вальное) (табл. 6).

Таблица 6

 

2,65 — 2,75 2,75 — 2,85 2,85 — 2,95 2,95 — 3,05 3,05 — 3,15
         

Для наглядности статистические распределения изображают графически в виде полигона и гистограммы.



Полигон частот — ломаная линия, отрезки которой соединяют точки с координатами 1, п1, (х2; п2),... или для полигона относительных частот — с координатами 1; р1*), (х2; р2 *),... (рис. 3.1). Рис. 3.1 относится к распределению, представленному в табл. 5.

Гистограмма частот — совокупность смежных прямоуголь­ников, построенных на одной прямой линии (рис. 3.2), основания прямоугольников одинаковы и равны а, а высоты равны отноше­нию частоты (или относительной частоты) к а:

 

(3.4)

 

Таким образом, площадь каждого прямоугольника равна соответ­ственно


Следовательно, площадь гистограммы частот , а площадь гистограммы относительных частот

Наиболее распространенными характеристиками статистическо­го распределения являются средние величины: мода, медиана и средняя арифметическая, или выборочная средняя.

Мода (Мо) равна варианте, которой соответствует наиболь­шая частота. В распределении массы новорожденных (см. табл. 5) Мо = 3,3 кг.

Медиана (Me) равна варианте, которая расположена в середи­не статистического распределения. Она делит статистический (ва­риационный) ряд на две равные части. При четном числе вариант за медиану принимают среднее значение из двух центральных ва­риант. В рассмотренном распределении (см. табл. 5) Me = 3,4 кг.

Выборочная средняя в) определяется как среднее арифмети­ческое значение вариант статистического ряда:

(3.5)

(3.6)

Для примера (см. табл. 5)

 

Для характеристики рассеяния вариант вокруг своего среднего значения вводят характеристику, называемую выборочной дисперсией, — среднее арифметическое квадратов отклонения ва­риант от их среднего значения:

 

(3.7)

 

Квадратный корень из выборочной дисперсии называют выбороч­ным средним квадратическим отклонением:

 

(3.8)


Для примера (см. табл. 5)





Поделиться с друзьями:


Дата добавления: 2016-10-06; Мы поможем в написании ваших работ!; просмотров: 428 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Бутерброд по-студенчески - кусок черного хлеба, а на него кусок белого. © Неизвестно
==> читать все изречения...

2438 - | 2357 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.