АКТИВНЫЕ ФОРМЫ КИСЛОРОДА И ОКСИДАТИВНАЯ МОДИФИКАЦИЯ МАКРОМОЛЕКУЛ: ПОЛЬЗА, ВРЕД И ЗАЩИТА
Человек в покое вдыхает около 280 мл О2 /мин, или не менее 400 л/сут, что соответствует 18 молям О2. Основное количество О2 (95-98%) расходуется на выработку энергии и окислительный катаболизм субстратов. Относительно небольшая часть (2-5%) переходит в активные формы кислорода (АФК) и затем частично используется для оксидативной модификации (ОМ) макромолекул. Это означает, что в АФК переходит ~ 0,4-0,9 моля О2. При отсутствии метаболизма средняя концентрация АФК в организме достигла бы 6-14 мМ. Однако реальный уровень в тканях равен 10- 8 М, то есть в 106 раз меньше Возникают вопросы: 1) какое значение имеют АФК и ОМ макромолекул - это просто утечка с главного пути использования О2 или важные процессы, но тогда они полезны или вредны; 2) как осуществляется мощный метаболизм АФК и активных окисленных молекул и почему это нужно?
ПУТИ ОБРАЗОВАНИЯ И МЕТАБОЛИТЫ
Кроме полного четырехэлектронного восстановления молекулы О2 до воды в дыхательной цепи митохондрий в аэробных клетках всегда происходит и неполное - одно-трехэлектронное восстановление с последовательным образованием различных АФК. Это свободный радикал-анион супероксид, перекись водорода Н2О2 и наиболее активный радикал - гидроксил НО•. Донорами электрона могут быть Fe2 + , Сu+ или семихиноны,
Термин "АФК" шире, чем "свободные радикалы кислорода", так как кроме последних включает также молекулы Н2О2, синглетный кислород 1О2 , озон О3 и гипохлорит HOCl.
АФК генерируются во всех частях клетки. Наибольший вклад вносит дыхательная цепь митохондрий, особенно при низкой концентрации АДФ. Важна роль и системы цитохрома Р-450, локализованной в эндоплазматической сети. Участвуют ядерная мембрана и другие части клетки, при этом АФК часто возникают не только спонтанно, но и ферментативно (НАДФН-оксидаза дыхательного взрыва в плазматической мембране и ксантиноксидаза в гиалоплазме). Концентрации АФК в тканях невысоки: Н2О2 - 10- 8 М, - 10-11 М, НО• < 10-11 М. АФК вызывают образование органических гидропероксидов ROOH - ДНК, белков, липидов, а также малых молекул. ROOH образуются и в реакции с обычным молекулярным О2 при участии ферментов диоксигеназ или циклооксигеназ:
RH + O2 → ROOH
ROOH по своей структуре подобны Н2О2 (R-O--O-H и Н-О-О-Н) и химически тоже активны, при последующем метаболизме они переходят в спирты, альдегиды, эпоксиды и другие окисленные соединения. Образование ROOH называют перекисным окислением (пероксидацией), а совокупность описанных реакций теперь именуют ОМ молекул.
АФК вызывают в липидах (L), в основном в остатках полиненасыщенных жирных кислот, цепные реакции с накоплением липидных радикалов L•, пероксирадикалов LOO•, гидропероксидов LOOH и алкоксирадикалов LO•:
Первые три реакции - это инициирование и продолжение цепи, а реакция LOOH c Fe2 + создает ее разветвление. Далее образуются диеновые конъюгаты, а затем минорные метаболиты: малоновый диальдегид, этан, пентан и др. На протяжении многих лет перекисное окисление липидов (ПОЛ) считали преимущественно спонтанным (неферментативным) и неспецифическим самоускоряющимся процессом и ему придавали ведущее значение в ОМ и ее последствиях. Однако затем стало ясно, что: 1) огромное значение имеют и ферментативные реакции типа (4), катализируемые липоксигеназами и циклооксигеназами - первыми ферментами путей, приводящих к образованию специфических регуляторов - эйкозаноидов; 2) в организме главными продуктами ПОЛ являются 4-гидроксиалкенали типа С5Н9-СНОН-СН=СН-СНО, то есть снова специфические вещества; 3) большое значение имеет ОМ и других макромолекул - ДНК и белков, усиленно изучаемая в 90-е годы.
АФК вызывают ОМ нуклеотидов и нуклеиновых кислот, особенно ДНК. Это приводит к гидропероксидам ROOH (так, из тимина образуется 5-СН2ООН-урацил), а затем к гидроксипроизводным ROH или R(OH)2 , основными из которых являются 8-ОН-2'-дезоксигуанозин и тимингликоль (их определение в тканях и моче используют как индексы ОМ ДНК). ОМ белков также вызывает образование в организме ROOH, а затем ROH (o- и m-тирозины), R(OH)2 (ДОФА), карбонилов и других окисленных производных; образуются и димеры (дитирозины); происходит также аутооксидативное гликозилирование белков.
БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ
На протяжении длительного времени в биологической и особенно медицинской литературе основной акцент делали на вредных эффектах АФК и ОМ. Они действительно существуют, но теперь уже нет сомнений, что образование АФК и ОМ приносят и пользу.
Эйкозаноиды - это гормоны, производные С20-полиненасыщенных жирных кислот типа арахидоновой. Их разделяют на циклические (простаноиды) и линейные (прежде всего лейкотриены). Промежуточными метаболитами являются пероксиды (соответственно циклический эндопероксид ПГ G2 и 5-НОО-арахидонат). Простаноиды защищают от повреждений клетки желудка, сердца и других органов. Липоксигеназа образует первый лейкотриен А4 - 5,6-эпоксид арахидоновой кислоты, который при гидратации переходит в лейкотриен В4, а при присоединении глутатиона - в лейкотриен С4. Лейкотриены, как и простаноиды, способствуют развитию воспаления (первично это полезная защитная реакция), при этом лейкотриен В4 вызывает хемотаксис и активацию нейтрофилов; лейкотриен С4 и его метаболит D4 стимулируют сокращение гладких мышц.
Серьезной проблемой для многоклеточных организмов является борьба с клетками-врагами. Важную роль в этом играют фагоциты (нейтрофилы и макрофаги), которые захватывают микроорганизмы, а затем убивают их, используя АФК в качестве основного оружия, повреждающего макромолекулы и мембраны путем их ОМ. Макрофаги разрушают поврежденные, старые или иммунологически несовместимые клетки, а также способствуют уничтожению злокачественных клеток и клеток, пораженных вирусами. Остеокласты (специализированные макрофаги) применяют АФК для разрушения кости - обязательного условия ее обновления. Во всех этих случаях клетки-защитники быстро поглощают большое количество О2 (дыхательный взрыв) и затем используют его для образования АФК при помощи расположенной в плазматической мембране НАДФН-оксидазы дыхательного взрыва:
2О2 + НАДФН 2 + → НАДФ+ + Н+
Важное значение АФК для защиты от бактерий доказывается тем, что при инактивирующей мутации этого фермента возникает хронический септический грануломатоз: фагоцитированные микроорганизмы остаются живыми, что приводит к повторным хроническим инфекциям и чревато сепсисом. Н2О2 используется также для окисления галоген-анионов: в нейтрофилах - Сl- - для образования мощного окислителя гипохлорита HClO, также убивающего бактерии, а в щитовидной железе - J-, что необходимо для синтеза гормонов иодтиронинов.
В последнее время обнаружены новые функции АФК - регуляторные. АФК стимулируют накопление в клетке вторых посредников - циклонуклеотидов: цAMФ и цГМФ, при этом последний образуется в результате активации НО• (но не другими АФК) гиалоплазматической гуанилилциклазы. АФК вызывают накопление ионов Са2+ в цитозоле и стимуляцию фосфорилирования белков в результате активации протеинкиназ (особенно протеинкиназы С) и протеинтирозинкиназ и ингибирования протеинфосфатаз; активируют белок Ras, играющий важную роль в передаче сигналов в ядро клетки. Активно исследуется, не могут ли АФК сами прямо выполнять функции вторых посредников гормонов. В пользу этого свидетельствуют накопление АФК при воздействии факторов роста клеток, цитокинов, инсулина, паратирина, витамина Д3, модификация эффектов этих гормонов под влиянием АФК и их снижение или блокада антиоксидантами. АФК и липидные ROOH в низких субтоксических концентрациях индуцируют такие процессы, как экспрессия генов (в том числе генов раннего ответа и других протоонкогенов) и деление клеток. Н2О2, накапливающаяся при инвазии вирусов и бактерий, активирует транскрипционный фактор NF-kB, что приводит к индукции ряда цитокинов и иммунных рецепторов и в результате к иммунным и воспалительным ответам, а также к индукции белков острой фазы и адгезии (последние способствуют выходу лейкоцитов в ткани, что важно при воспалении). Очевидно, роль АФК в защите организма шире, чем предполагалось ранее: она включает не только фагоцитоз опасных клеток, но и запуск других воспалительных реакций и иммунных процессов.
Патологические последствия возникают при чрезмерном накоплении АФК, пероксидов и их вторичных продуктов - состоянии, называемом обычно оксидативным стрессом, а факторы и вещества, способствующие этому, называют прооксидантами, эти термины спорны (речь идет не об основных окислительных процессах), но общеприняты. Факторы, вызывающие окислительный стресс, различны, но все они в конечном счете вызывают ОМ макромолекул. Прежде всего это избыток О2, особенно при гипербарической оксигенации (лечении кислородом под повышенным давлением) и реперфузии, то есть возобновления кровотока после его нарушения из-за тромбоза (закупорки сосуда) или сильного спазма, характерных для инфаркта миокарда или инсульта головного мозга. Значительная выраженность воспаления с активацией нейтрофилов и макрофагов также неизбежно приводит к накоплению АФК. К другим факторам относят избыток гема, Fe2+ и Cu+, ионизирующие и ультрафиолетовое излучения, курение, витамин Д, большие дозы витамина А и некоторые ксенобиотики. Для последних наиболее важными процессами являются: 1) окисление в пероксисомах (гликолат), митохондриях (амины) или в микросомах (лекарства амидопирин, гексенал, дионин) с образованием Н2О2; 2) редокс-циклирование хинонов (менадион, доксорубицин, фурадонин), метронидазола и бипиридильных гербицидов (паракват, дикват), вызывающее аккумуляцию.
Окислительный стресс приводит к повреждению наиболее важных полимеров - нуклеиновых кислот, белков и липидов. Из АФК только НО• вызывает повреждения ДНК (окисление оснований, их модификации, разрывы цепей, повреждения хромосом), при этом сейчас считают, что АФК вызывают больше мутаций, чем другой класс мутагенов - алкилирующие вещества. Мутации могут привести к патологии и гибели клеток или их злокачественному перерождению (раки, лейкозы и др.), а мутации в ДНК половых клеток - к наследуемым заболеваниям. Высокие концентрации АФК и липидных гидропероксидов ингибируют синтез ДНК и деление клеток и могут активировать апоптоз (программированную смерть клеток), что полезно для организма, так как ценой гибели части клеток предупреждает прогрессирование злокачественных процессов и гибель целого организма.
ОМ белков, вызванная АФК, не только изменяет аминокислотные остатки, но и нарушает третичную структуру и даже вызывает агрегацию и денатурацию. В результате снижается или исчезает их многообразная функциональная активность (ферментативная, регуляторная, участие в матричных синтезах, транспорт ионов и липидов), а некоторые из них способствуют мутациям или становятся аутоантигенами. ПОЛ прежде всего повреждает клеточные мембраны. Кроме того, продукты ПОЛ (4-гидроксиалкенали, малоновый диальдегид и др.) являются мутагенными и цитотоксичными. Избыток некоторых эйкозаноидов также дает патологические эффекты: тромбоз и гипертонию (тромбоксаны), гиперчувствительность, участие в патогенезе бронхиальной астмы, шока, инфаркта миокарда, язвы желудка (лейкотриены).
Все описанные нарушения могут серьезно или полностью дезорганизовать функционирование клеток и организма в целом, утяжелить или даже вызвать серьезные болезни и привести к смерти и / или наследственной патологии. Оксидативный стресс с накоплением в тканях и биологических жидкостях АФК и вторичных продуктов ОМ макромолекул обнаружен при многих (> 60) болезнях и патологических синдромах, часто называемых свободно-радикальной патологией: старении, различных злокачественных процессах, хроническом воспалении (ревматоидный артрит, гастрит и язва, колиты, цистит и др.), СПИДе, сахарном диабете, атеросклерозе, последствиях инфаркта и инсульта, катаракте, нейродегенеративных заболеваниях (паркинсонизм, болезнь Альцгеймера и др.) и многих других. Правда, далеко не всегда установлены первичность накопления АФК и / или ОМ макромолекул и их важное значение в патогенезе. Многие не учитывают, что эти нарушения могут быть не причиной, а следствием развития болезней. Наконец, важно подчеркнуть, что организм отнюдь не беззащитен по отношению к АФК и ОМ макромолекул.
ЗАЩИТА
Защита осуществляется двумя принципиально различными механизмами: 1) снижением образования первой АФК - путем уменьшения О2 в клетке или его более быстрого использования дыхательной цепью ввиду снятия ее контроля DmН+, 2) функционированием антиоксидантной системы (АОС). Мы рассматриваем только второй механизм.
АОС включает как низкомолекулярные антиоксиданты, так и антиоксидантные ферменты. Ясно, чтоих концентрация значительно выше, чем АФК. Гидрофильные восстановленный глутатион (GSH) и аскорбиновая кислота (в мышцах и карнозин) находятся в водной фазе клетки и защищают вещества гиалоплазмы и матрикса митохондрий, а гидрофобные антиоксиданты защищают мембраны. Эти вещества перехватывают свободные радикалы, восстанавливают АФК и продукты ОМ. Отметим, что среди низкомолекулярных антиоксидантов важную роль играют пищевые вещества: витамины С и Е и каротины. Такими же свойствами обладают ураты и билирубин, которые ранее считали просто ненужными и даже вредными метаболитами.
Еще более важную роль играют антиоксидантные ферменты. Обычно выделяют три линии защиты: 1) супероксиддисмутаза, 2) селеновая глутатионпероксидаза (ГПО) и каталаза, 3) ГПО и глутатионтрансферазы, а также недавно обнаруженная фосфолипидгидропероксид-ГПО. Супероксиддисмутаза восстанавливает супероксид, каталаза - Н2О2, ГПО - Н2О2 и органические гидропероксиды ROOH свободных жирных кислот, нуклеотидов, нуклеиновых кислот и, вероятно, белков.
Глутатионтрансферазы восстанавливают только ROOH, но важно, что один из изоферментов находится прямо в хроматине и восстанавливает ROOH ДНК в ядре. Фосфолипидгидропероксид-ГПО восстанавливает ROOH жирных кислот в составе фосфолипидов (для этого не требуется предварительный гидролиз последних). Вспомогательным ферментом является глутатионредуктаза, регенерирующая GSH из GSSG путем НАДФН-зависимого восстановления:
Это уменьшает или даже предупреждает прогрессирование ПОЛ и ОМ нуклеиновых кислот и белков. Однако необходимо обезвреживание вторичных метаболитов ОМ - это четвертая линия защиты. ГТ конъюгирует с GSH ряд окисленных веществ, в том числе главный продукт ПОЛ - 4-гидроксиалкенали и опасные эпоксиды. Формальдегиддегидрогеназа и глиоксалаза, использующие GSH в качестве кофермента, окисляют свои субстраты до органических кислот. Кроме того, альдегиддегидрогеназа окисляет малоновый диальдегид. Хинонредуктаза (ДТ-диафораза) обеспечивает двухэлектронное восстановление хинонов в дигидрохиноны, что предупреждает образование вредных продуктов одноэлектронного восстановления - семихинонов; эпоксидгидролаза гидратирует эпоксиды с образованием диолов. В целом ферментативная АОС обеспечивает мощный и эффективный метаболизм не только АФК, но и активных окисленных соединений. В АОС особенно важна роль GSH: 1) это главный восстановитель клетки, его концентрация (1-10 мМ) выше, чем большинства органических веществ; 2) как и другие низкомолекулярные антиоксиданты, он прямо восстанавливает АФК; 3) функционирует на трех линиях ферментативной защиты (восстановление Н2О2, ROOH и обезвреживание вторичных метаболитов ОМ) из четырех; 4) GSH-зависимые ферменты работают во всех частях клетки, включая ядро, митохондрии и эндоплазматическую сеть. Известный антиоксидатный эффект Se также в основном опосредован ферментами - обеими ГПО.
Важность АОС доказывается: 1) накоплением АФК и нарастанием ОМ при дефиците низкомолекулярных антиоксидантов: GSH, витаминов Е и С; 2) гибелью нейронов спинного и головного мозга при инактивирующей мутации СОД (амиотрофический латеральный склероз); 3) развитием при серьезном дефиците GSH или GSH-зависимых ферментов гемолиза эритроцитов, катаракты хрусталика и поражения печени проксидантными ядами (ССl4 и др.). Неудивительно, что оксидативный стресс возникает не только при избыточности АФК и ОМ макромолекул, но и при недостаточности АОС (не только абсолютной, но и относительной). Следовательно, окислительный стресс - это сдвиг к преобладанию прооксидантов над антиоксидантами.
Но АОС выполняет и другую важную функцию. Она снижает или даже предупреждает большинство эффектов, вызываемых АФК и OМ макромолекул: активацию протеинкиназы С, фактора NF-kB, экспрессии генов (в том числе протоонкогенов) и апоптоза, действие гормонов типа факторов роста клеток и цитокинов, тормозит прогрессирование СПИДа. Это не только стало дополнительным и независимым подтверждением регуляторных функций АФК, но и привело к признанию регуляторных функций АОС, к рождению концепции внутриклеточной редокс-регуляции, определяемой соотношением прооксидантов и антиоксидантов. Возникли и определенные надежды на антиоксидантную профилактику злокачественных процессов путем применения природных (витамины Е, С и каротины) и синтетических антиоксидантов. Сейчас это усиленно проверяется.
Если ОМ происходит и повреждает макромолекулы, то клетка вынуждена их разрушать: активируется катаболизм полимеров, осуществляемый пептидазами, фосфолипазами (особенно А2) и нуклеазами, а затем новые синтезы восполняют убыль. Для ДНК включается и механизм репарации - хорошо известно, что это единственные биомолекулы, для которых он существует.