Еврейская система счисления в качестве цифр использует 22 буквы еврейского алфавита. Каждая буква имеет своё числовое значение от 1 до 400 (см. т. ж. Гематрия). Нольотсутствует. Цифры, записанные таким образом, наиболее часто можно встретить в нумерации лет по
6 вопрос
ЭВМ первого поколения были ламповыми машинами 50-х годов. Их элементной базой были электровакуумные лампы. Эти ЭВМ были весьма громоздкими сооружениями, содержавшими в себе тысячи ламп, занимавшими иногда сотни квадратных метров территории, потреблявшими электроэнергию в сотни киловатт.
Например, одна из первых ЭВМ – ENIAC–представляла собой огромный по объему агрегат длиной более 30 метров, содержала 18 тысяч электровакуумных ламп и потребляла около 150 киловатт электроэнергии.
Для ввода программ и данных применялись перфоленты и перфокарты. Не было монитора, клавиатуры и мышки. Использовались эти машины, главным образом, для инженерных и научных расчетов, не связанных с переработкой больших объемов данных. В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор.
Транзисторы
В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения. Машины стали компактнее, надежнее, менее энергоемкими. Возросло быстродействие и объем внутренней памяти. Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах.
В этот период стали развиваться языки программирования высокого уровня: ФОРТРАН, АЛГОЛ, КОБОЛ. Составление программы перестало зависеть от конкретной модели машины, сделалось проще, понятнее, доступнее.
В 1959 г. был изобретен метод, позволивший создавать на одной пластине и транзисторы, и все необходимые соединения между ними. Полученные таким образом схемы стали называться интегральными схемами или чипами. Изобретение интегральных схем послужило основой для дальнейшей миниатюризации компьютеров.
В дальнейшем количество транзисторов, которое удавалось разместить на единицу площади интегральной схемы, увеличивалось приблизительно вдвое каждый год.
Третье поколение ЭВМ создавалось на новой элементной базе – интегральных схемах (ИС).
Микросхемы
ЭВМ третьего поколения начали производиться во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM-360. Немного позднее появились машины серии IBM-370.
В Советском Союзе в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая система ЭВМ) по образцу IBM 360/370. Скорость работы наиболее мощных моделей ЭВМ достигла уже нескольких миллионов операций в секунду. На машинах третьего поколения появился новый тип внешних запоминающих устройств – магнитные диски.
Успехи в развитии электроники привели к созданию больших интегральных схем (БИС), где в одном кристалле размещалось несколько десятков тысяч электрических элементов.
Микропроцессор
В 1971 году американская фирма Intel объявила о создании микропроцессора. Это событие стало революционным в электронике.
Микропроцессор – это миниатюрный мозг, работающий по программе, заложенной в его память. Соединив микропроцессор с устройствами ввода-вывода и внешней памяти, получили новый тип компьютера: микро-ЭВМ.
Микро-ЭВМ относится к машинам четвертого поколения. Наибольшее распространение получили персональные компьютеры (ПК). Их появление связано с именами двух американских специалистов: Стива Джобса и Стива Возняка. В 1976 году на свет появился их первый серийный ПК Apple-1, а в 1977 году – Apple-2.
Однако с 1980 года «законодателем мод» на рынке ПК становится американская фирма IBM. Ее архитектура стала фактически международным стандартом на профессиональные ПК. Машины этой серии получили название IBM PC (Personal Computer). Появление и распространение ПК по своему значению для общественного развития сопоставимо с появлением книгопечатания.
С развитием этого типа машин появилось понятие «информационные технологии», без которых невозможно обойтись в большинстве областей деятельности человека. Появилась новая дисциплина – информатика.
ЭВМ пятого поколения будут основаны на принципиально новой элементной базе. Основным их качеством должен быть высокий интеллектуальный уровень, в частности, распознавание речи, образов. Это требует перехода от традиционной фон-неймановской архитектуры компьютера к архитектурам, учитывающим требования задач создания искусственного интеллекта. Таким образом, для компьютерной грамотности необходимо понимать, что на данный момент создано четыре поколения ЭВМ:
· 1-ое поколение: 1946 г. создание машины ЭНИАК на электронных лампах.
· 2-ое поколение: 60-е годы. ЭВМ построены на транзисторах.
· 3-ье поколение: 70-е годы. ЭВМ построены на интегральных микросхемах (ИС).
· 4-ое поколение: Начало создаваться с 1971 г. с изобретением микропроцессора (МП). Построены на основе больших интегральных схем (БИС) и сверх БИС (СБИС).
Пятое поколение ЭВМ строится по принципу человеческого мозга, управляется голосом. Соответственно, предполагается применение принципиально новых технологий. Огромные усилия были предприняты Японией в разработке компьютера 5-го поколения с искусственным интеллектом, но успеха они пока не добились.
Фирма IBM тоже не намерена сдавать свои позиции мирового лидера, например, Японии. Мировая гонка за создание компьютера пятого поколения началась еще в 1981 году. С тех пор еще никто не достиг финиша. Поживем – увидим.
P.S. Чтобы подписаться на новые статьи, которых еще нет на блоге:
1) Введите Ваш электронный адрес.
2) Через несколько минут на Ваш e-mail придёт письмо для активации подписки. Обязательно кликните по указанной там ссылке для завершения подписки.
КЛАССЫ ЭВМ
СуперЭВМ К суперЭВМ относятся мощные многопроцессорные вычислительные машины с быстродействием сотни миллионов - десятки миллиардов операций в секунду. Супер-компьютеры используются для решения сложных и больших научных задач (метеорология, гидродинамика и т. п.), в управлении, разведке, в качестве централизованных хранилищ информации и т.д. Архитектура суперкомпьютеров основана на идеях параллелизма и конвейеризации вычислений. В этих машинах параллельно, то есть одновременно, выполняется множество похожих операций (это называется мультипроцессорной обработкой). Таким образом, сверхвысокое быстродействие обеспечивается не для всех задач, а только для задач, поддающихся распараллеливанию. Что такое конвейеpная обработка? Приведем сравнение — на каждом рабочем месте конвейера выполняется один шаг производственного процесса, а на всех рабочих местах в одно и то же время обрабатываются различные изделия на всевозможных стадиях. По такому принципу устроено арифметико-логическое устройство суперкомпьютера. Отличительной особенностью суперкомпьютеров являются векторные процессоры, оснащенные аппаратурой для параллельного выполнения операций с многомерными цифровыми объектами — векторами и матрицами. В них встроены векторные регистры и параллельный конвейерный механизм обработки. Если на обычном процессоре программист выполняет операции над каждым компонентом вектора по очереди, то на векторном — выдаёт сразу векторные команды. Векторная аппаратура очень дорога, в частности, потому, что требуется много сверхбыстродействующей памяти под векторные регистры. Наряду с векторно-конвейерной системой обработки данных существует и скалярная система, основанная на выполнении обычных арифметических операций над отдельными числами или парами чисел. Строго говоря, системы, использующие скалярную обработку данных, по своей производительности уступают суперЭВМ, но у них наблюдаются тенденции, характерные для высокопроизводительных вычислительных систем: необходимость распараллеливания больших задач между процессорами. Типовая модель суперЭВМ должна иметь примерно следующие характеристики: высокопараллельная многопроцессорная вычислительная система с быстродействием примерно 100000 МFLOPS; емкость: оперативной памяти 10 Гбайт, дисковой памяти 1-10 Тбайт (1 1000Гбайт); разрядность: 64; 128 бит. Большие ЭВМ Большие ЭВМ за рубежом чаще всего называют мэйнфреймами (Mainframe). К мэйнфреймам относят, как правило, компьютеры, имеющие следующие характеристики: производительность не менее 10 MIPS; основную память емкостью от 64 до 1000 Мбайт; внешнюю память не менее 50 Гбайт; многопользовательский режим работы (обслуживает одновременно от 16 до 1000 пользователей). Мейнфреймы и до сегодняшнего дня остаются наиболее мощными (не считая суперкомпьютеров) вычислительными системами общего назначения, обеспечивающими непрерывный круглосуточный режим эксплуатации. Они могут включать один или несколько процессоров, каждый из которых, в свою очередь, может оснащаться векторными сопроцессорами (ускорителями операций с суперкомпьютерной производительностью). В нашем сознании мейнфреймы все еще ассоциируются с большими по габаритам машинами, требующими специально оборудованных помещений с системами водяного охлаждения и кондиционирования. Однако это не совсем так. Прогресс в области элементно-конструкторской базы позволил существенно сократить габариты основных устройств. Наряду со сверхмощными мейнфреймами, требующими организации двухконтурной водяной системы охлаждения, имеются менее мощные модели, для охлаждения которых достаточно принудительной воздушной вентиляции, и модели, построенные по блочно-модульному принципу и не требующие специальных помещений и кондиционеров. Основными поставщиками мейнфреймов являются известные компьютерные компании IBM, Amdahl, ICL, Siemens, Nixdorf и некоторые другие, но ведущая роль принадлежит безусловно компании IBM. Именно архитектура системы IBM/360, выпущенной в 1964 году, и ее последующие поколения стали образцом для подражания. В нашей стране в течение многих лет выпускались машины ряда ЕС ЭВМ, являвшиеся отечественным аналогом этой системы. В архитектурном плане мейнфреймы представляют собой многопроцессорные системы, содержащие один или несколько центральных и периферийных процессоров с общей памятью, связанных между собой высокоскоростными магистралями передачи данных. При этом основная вычислительная нагрузка ложится на центральные процессоры, а периферийные процессоры (в терминологии IBM - селекторные, блок-мультиплексные, мультиплексные каналы и процессоры телеобработки) обеспечивают работу с широкой номенклатурой периферийных устройств. Они предназначены для решения широкого класса научно-технических задач и являются сложными и дорогими машинами. Их целесообразно применять в больших системах при наличии не менее 200 - 300 рабочих мест. Централизованная обработка данных на мэйнфрейме обходится примерно в 5 - 6 раз дешевле, чем распределённая обработка при клиент-серверном подходе. Известный мейнфрейм S/390 фирмы IBM обычно оснащается не менее чем тремя процессорами. Максимальный объём оперативного хранения достигает 342 Терабайт. Производительность его процессоров, пропускная способность каналов, объём оперативного хранения позволяют наращивать число рабочих мест в диапазоне от 20 до 200000 с помощью простого добавления процессорных плат, модулей оперативной памяти и дисковых накопителей. Десятки мейнфреймов могут работать совместно под управлением одной операционной системы над выполнением единой задачи. Малые ЭВМ Малые ЭВМ (мини ЭВМ) - надежные, недорогие и удобные в эксплуатации компьютеры, обладающие несколько более низкими по сравнению с мэйнфреймами возможностями Мини - ЭВМ (и наиболее мощные из них супермини - ЭВМ) обладают следующими характеристиками: производительность - до 100 МIPS; емкость основной памяти - 4-512 Мбайт; емкость дисковой памяти - 2-100 Гбайт; число поддерживаемых пользователей-16-512. Все модели мини-ЭВМ разрабатываются на основе микропроцессорных наборов интегральных микросхем, 16-, 32-, 64-разрядных микропроцессоров. Основные их особенности: широкий диапазон производительности в конкретных условиях применения, аппаратная реализация большинства системных функций ввода-вывода информации, простая реализация микропроцессорных и многомашинных систем, высокая скорость обработки прерываний, возможность работы с форматами данных различной длины. К достоинствам мини-ЭВМ можно отнести: специфичную архитектуру с большой модульностью, лучшее, чем у мэйнфреймов, соотношение производительность/цена, повышенная точность вычислений. Мини-ЭВМ ориентированы на использование в качестве управляющих вычислительных комплексов. Традиционная для подобных комплексов широкая номенклатура периферийных устройств дополняется блоками межпроцессорной связи, благодаря чему обеспечивается реализация вычислительных систем с изменяемой структурой. Наряду с использованием для управления технологическими процессами мини-ЭВМ успешно применяются для вычислений в многопользовательских вычислительных системах, в системах автоматизированного проектирования, в системах моделирования несложных объектов, в системах искусственного интеллекта. Родоначальником современных мини-ЭВМ можно считать компьютеры РDР-11 (Program Driven Processor - программно-управляемый процессор) фирмы DЕС (Digital Equipment Corporation - Корпорация дискретного оборудования, США), они явились прообразом и наших отечественных мини-ЭВМ - Системы Малых ЭВМ (СМ ЭВМ): CM 1, 2,3,4,1400,1700 и др. Микрокомпьютеры Микрокомпьютеры — это компьютеры, в которых центральный процессор выполнен в виде микропроцессора. Продвинутые модели микрокомпьютеров имеют несколько микропроцессоров. Производительность компьютера определяется не только характеристиками применяемого микропроцессора, но и ёмкостью оперативной памяти, типами периферийных устройств, качеством конструктивных решений и др. Микрокомпьютеры представляют собой инструменты для решения разнообразных сложных задач. Их микропроцессоры с каждым годом увеличивают мощность, а периферийные устройства — эффективность. Быстродействие — порядка 1 - 10 миллионов опеpаций в сек. Разновидность микрокомпьютера — микроконтроллер. Это основанное на микропроцессоре специализированное устройство, встраиваемое в систему управления или технологическую линию. История развития ЭВМ [править]Счётно-решающие средства до появления ЭВМ История вычислений уходит глубокими корнями в даль веков так же, как и развитие человечества. Накопление запасов, делёж добычи, обмен — все подобные действия связаны со счётом. Для подсчёта люди использовали собственные пальцы, камешки, палочки и узелки. Потребность в поиске решений всё более и более сложных задач и, как следствие, все более сложных и длительных вычислений, поставила человека перед необходимостью находить способы, изобретать приспособления, которые могли бы ему в этом помочь. Исторически сложилось так, что в разных странах возникли собственные денежные единицы, меры веса, длины, объёмов и расстояний. Для перевода из одной системы измерения в другую требовались вычисления, которые чаще всего могли производить специально обученные люди, которых иногда приглашали из других стран. Это естественно привело к созданию изобретений, помогающих счёту. Одним из первых устройств (VI—V вв. до н. э.), облегчающих вычисления, можно считать специальную доску для вычислений, названную «абак». Вычисления на ней производились перемещением камешков или костей в углубления досок из бронзы, камня или слоновой кости. Со временем эти доски стали расчерчивать на несколько полос и колонок. В Греции абак существовал уже в V веке до н. э., у японцев он назывался «серобян», у китайцев — «суанпан». В Древней Руси при счёте применялось устройство, похожее на абак, называемое «русский шот». В XVII веке этот прибор уже обрёл вид привычных русских счёт. В начале XVII столетия, когда математика стала играть ключевую роль в науке, всё острее ощущалась необходимость в изобретении счётной машины. И в середине века молодой французский математик и физик Блез Паскаль создал «суммирующую» машину, названной Паскалиной, которая кроме сложения выполняла и вычитание. В 1670—1680 гг. немецкий математик Готфрид Лейбниц конструировал счётную машину, которая выполняла все арифметические действия. В течение следующих двухсот лет было изобретено и построено ещё несколько подобных счётных устройств, которые, однако, из-за своих недостатков, в том числе из-за медлительности в работе, не получили широкого распространения. Лишь в 1878 году русский ученый П. Чебышёв предложил счётную машину, выполнявшую сложение и вычитание многозначных чисел. Наибольшую популярность получил тогда арифмометр, сконструированный петербургским инженером Однером в 1874 году Конструкция прибора оказалась весьма удачной, так как позволяла довольно быстро выполнять все четыре арифметических действия. В 30-е годы XX столетия в нашей стране был разработан более совершенный арифмометр — «Феликс». Эти счётные устройства использовались несколько десятилетий, став основным техническим средством облегчения человеческого труда. [править]Создание первых компьютеров В 1812 году английский математик и экономист Чарльз Бэббидж начал работу над созданием, так называемой «разностной» машины, которая, по его замыслам, должна была не просто выполнять арифметические действия, а проводить вычисления по программе, задающей определённую функцию. В качестве основного элемента своей машины Бэббидж взял зубчатое колесо для запоминания одного разряда числа (всего таких колёс было 18). К 1822 году учёный построил небольшую действующую модель и рассчитал на ней таблицу квадратов. В 1834 году Бэббидж приступил к созданию «аналитической» машины. Его проект содержал более 2000 чертежей различных узлов. Машина Бэббиджа предполагалась как чисто механическое устройство с паровым приводом. Она состояла из хранилища для чисел («склад»), устройства для производства арифметических действий над числами (Бэббидж назвал его «фабрикой») и устройства, управляющего операциями машины в нужной последовательности, включая перенос чисел из одного места в другое; были предусмотрены средства для ввода и вывода чисел. Бэббидж работал над созданием своей машины до конца своей жизни (он умер в 1871 году), успев сделать лишь некоторые узлы своей машины, которая оказалась слишком сложной для того уровня развития техники. В 1842 году в Женеве была опубликована небольшая рукопись итальянского военного инженера Л.Ф. Менабреа «Очерк об аналитической машине, изобретённой Чарльзом Бэббиджем», переведённая в последствии ученицей и помощницей Бэббиджа дочерью Дж. Г. Байрона — леди Адой Лавлейс. При содействии Бэббиджа Ада Лавлейс составляла первые программы для решения систем двух линейных уравнений и для вычисления чисел Бернулли. Леди Лавлейс стала первой в мире женщиной-программистом. После Бэббиджа значительный вклад в развитие техники автоматизации счёта внёс американский изобретатель Г. Холлерит, который в 1890 году впервые построил ручной перфоратор для нанесения цифровых данных на перфокарты и ввёл механическую сортировку для раскладки этих перфокарт в зависимости от места пробива. Им была построена машина — табулятор, которая прощупывала отверстия на перфокартах, воспринимала их как соответствующие числа и подсчитывала их. Табуляторы Холлерита были использованы при переписи населения в США, Австрии, Канаде, Норвегии и в др. странах. Они же использовались при первой Всероссийской переписи населения в 1897 году, причём Холлерит приезжал в Россию для организации этой работы. В 1896 году Холлерит основал всемирно известную фирму Computer Tabulating Recording, специализирующуюся на выпуске счетно-перфорационных машин и перфокарт. В дальнейшем фирма была преобразована в фирму International Business Machines (IBM), ставшую сейчас передовым разработчиком компьютеров. Новый инструмент — ЭВМ — служит человеку пока лишь чуть больше полвека. ЭВМ — одно из величайших изобретений середины XX века, изменивших человеческую жизнь во многих ее проявлениях. Вычислительная техника превратилась в один из рычагов обеспечивающих развитие и достижения научно-технического прогресса. Первым создателем автоматической вычислительной машины считается немецкий учёный К. Цузе. Работы им начаты в 1933 году, а в 1936 году он построил модель механической вычислительной машины, в которой использовалась двоичная система счисления, форма представления чисел с «плавающей» запятой, трёхадресная система программирования и перфокарты. В качестве элементной базы Цузе выбрал реле, которые к тому времени давно применялись в различных областях техники. В 1938 году Цузе изготовил модель машины Z1 на 16 слов; в следующем году модель Z2, а еще через два года он построил первую в мире действующую вычислительную машину с программным управлением (модель Z3), которая демонстрировалась в Германском научно-исследовательском центре авиации. Это был релейный двоичный компьютер, имеющий память на 64 22-разрядных числа с плавающей запятой: 7 разрядов для порядка и 15 разрядов для мантиссы. К несчастью, все эти образцы машин были уничтожены во время бомбардировок в ходе Второй мировой войны. После войны Цузе изготовил модели Z4 и Z5. К. Цузе в 1945 году создал язык Plankalkul (от немецкого «исчисление планов»), который относится к ранним формам алгоритмических языков. Этот язык был большей степени машинно-ориентированным, но по некоторым возможностям превосходил АЛГОЛ. Независимо от Цузе построением релейных автоматических вычислительных машин занимались в США Д. Штибитц и Г. Айкен. Д. Штибитц, тогда работавший в фирме Bell, собрал на телефонных реле первые суммирующие схемы. В 1940 году вместе с С. Уильямсом Штибитц построил «вычислитель комплексных чисел», или релейный интерпретатор, который последствии стал известен как специализированный релейный компьютер «Bell-модель 1». В этом же году машина демонстрировалась на заседании Американского математического общества, где были проведены её первый промышленные испытания. В последующие годы были созданы ещё четыре модели этой машины. Последняя из них разработана Штибитцем в 1946 году (модель V) — это был компьютер общего назначения, содержащий 9000 реле и занимающий площадь почти 90 м2, вес устройства составлял 10 т. Другую идею релейного компьютера выдвинул в 1937 году аспирант Гарвардского университета Г. Айкен. Его идеей заинтересовалась фирма IBM. В помощь Айкену подключили бригаду инженеров во главе с К. Лейком. Работа по проектированию и постройки машины, названной «Марк-1», началась в 1939 году и продолжалась 5 лет. Машина состояла из стандартных деталей, выпускаемых IBM в то время. Электронные лампы при создании вычислительной машины были впервые применены американским профессором физики и математики Д. Атанасовым. Атанасов работал над проблемой автоматизации решения больших систем линейных уравнений. В декабре 1939 году Атанасов окончательно сформулировал и осуществил на практике свои основные идеи, создав вместе с К. Берри работающую настольную модель машины. После этого он приступил к созданию машины, способной решить систему с 29 неизвестными. Память машины была энергоёмкая — использовалось 1632 бумажных конденсатора. Всего использовалось 300 электронных ламп. К весне 1942 г. когда монтаж машины был почти завершен, США уже находилось в состоянии войны с Германией, и, к несчастью, проект был свёрнут. В 1942 году профессор электротехнической школы Мура Пенсильванского университета Д. Маучли представил проект «Использование быстродействующих электронных устройств для вычислений», положивший начало созданию первой электронной вычислительной машины ENIAC. Около года проект пролежал без движения, пока им не заинтересовалась Баллистическая исследовательская лаборатория армии США. В 1943 году под руководством Д. Маучли и Д. Эккерта были начаты работы по созданию ENIAC, демонстрация состоялась 15 февраля 1946 года. Новая машина имела «впечатляющие» параметры: 18000 электронных ламп, площадь 90 × 15 м2, весила 30 т и потребляла 150 кВт. ENIAC работала с тактовой частотой 100 кГц и выполняла сложение за 0,2 мс, а умножение — за 2,8 мс, что было на три порядка быстрее, чем это могли делать релейные машины. По своей структуре ЭВМ ENIAC напоминала механические вычислительные машины. Долгое время считалось, что ENIAC единственный электронный компьютер, но в 1975 году Великобритания сообщила о том, что уже с декабря 1945 года в государственном институте Блетчли-Парк работал первый программируемый ЭВМ «Колосс», но для правильной оценки компьютера Англия не предоставила много данных. С точки зрения архитектуры ЭВМ с хранимой в памяти программой революционными были идеи американского математика, Члена Национальной АН США и американской академии искусств и наук Джона фон Неймана (1903—1957). Эти идеи были изложены в статье «Предварительное рассмотрение логической конструкции электронного вычислительного устройства», написанная вместе с А. Берксом и Г. Голдстайном и опубликованная в 1946 году. Вот как представлял фон Нейман свою ЭВМ: § Машина должна состоять из основных органов: орган арифметики, памяти, управления и связи с оператором, чтобы машина не зависела от оператора. § Она должна запоминать не только цифровую информацию, но и команды, управляющие программой, которая должна проводить операции над числами. § ЭВМ должна различать числовой код команды от числового кода числа. § У машины должен быть управляющий орган для выполнения команд, хранящихся в памяти. § В ней также должен быть арифметический орган для выполнения арифметических действий. § И, наконец, в её состав должен входить орган ввода-вывода. В 1945 г. Англия приступила к созданию первой машины с неймовским типом памяти. Работа была возглавлена Т. Килбрном из Манчестерского университета и Ф. Вильямсем из Кембриджского. Уже 21 июня 1948 года Т. Килбрн и Ф. Вильямс просчитали первую программу на ЭВМ «Марк-1» (одинаковое название с машиной Айкена). Другая группа во главе с М. Уилксом 6 мая 1949 года произвела первые расчёты машине того же типа — EDSAC. Вскоре были построены ещё машины EDVAC (1950 г.), BINAC и SEAC. В ноябре месяце того же года в Киевской лаборатории моделирования и вычислительной техники Института электротехники АН СССР под руководством академика С. А. Лебедева была создана первая советская ЭВМ — МЭСМ. МЭСМ была принципиально новой машиной, так как профессор Лебедев применил принцип параллельной обработки слов. [править]Ламповые ЭВМ Разработка первой серии электронной машины UNIAC (Universal Automatic Computer) начата примерно в 1947 году. Д. П. Эккертом и Д. Мочли, основавшими фирму Eckert-Mauchly. Первый образец UNIAC-1 был построен для Бюро переписи США в 1951 г. UNIAC был создан на базе ЭВМ ENIAC и EDVIAC. Работала с тактовой частотой 2,25 МГц и содержала около 5000 электронных ламп. Емкость памяти — 1000 12-разрядных десятичных чисел. Следующим шагом было увеличение быстродействие памяти, для чего учёные стали исследовать свойства ферритовых колец. Впервые память на магнитных сердечниках была применена в машине «Whirlwind-1». Она представляла собой два куба с 32 × 32 × 17 сердечниками, обеспечивающих хранение 2048 слов для 16-разрядных двоичных чисел. В разработку электронных компьютеров включилась и фирма IBM, которая в 1952 году выпустила первый промышленный компьютер IBM-701. Машина содержала 4000 электронных ламп и 12 000 германиевых диодов. В 1956 году IBM выпустила новый серийный компьютер — IBM-704, отличавшийся высокой скоростью работы. После ЭВМ IBM-704 была выпущена машина IBM-709, в архитектурном плане приблизившаяся к машинам второго и третьего поколения. В 1956 году IBM разработала плавающие магнитные головки на воздушной подушке, изобретение которых позволило создать новый тип памяти — дисковые запоминающие устройства (ЗУ). Впервые ЗУ на дисках появились в машине IBM-305 и RAMAC-650, которая имела пакет из 50 металлических дисков с магнитным покрытием, вращающиеся со скоростью 1 200 об/мин. На поверхности диска размещалось 100 дорожек для записи данных 10 000 знаков каждая. Вслед за первым серийным компьютером UNIAC-1 фирма REMINGTON-RAND в 1952 году выпустила ЭВМ UNIAC-1103, которая работала в 50 раз быстрее. В октябре 1952 году группа сотрудников фирмы REMINGTON-RAND предложила алгебраическую форму записи алгоритмов; на основе этого офицер военно-морских сил США и руководитель группы программистов, капитан Грейс Хопперт разработала первую программу-компилятор A-0. Фирма IBM также сделала первые шаги в области автоматизации программирования, создав в 1953 году для машины IBM-701 «Систему быстрого кодирования». В 1957 году группа Д. Бэкуса завершила работу над ставшим впоследствии популярным языком программирования высокого уровня ФОРТРАНОМ. Он способствовал расширению сферы деятельности компьютеров. В 1951 году фирма Ferranti стала выпускать машину «Марк-1». А через 5 лет выпустила ЭВМ «Pegasus», использующую концепцию регистров общего назначения. В СССР в 1948 году проблемы развития вычислительной техники становятся общегосударственной задачей. В 1950 году в Институте точной механики и вычислительной техники (ИТМ и ВТ АН СССР) организован отдел цифровой ЭВМ для разработки и создания большой ЭВМ. Эту работу возглавил С. А. Лебедев (1902—1974). В 1951 году здесь была спроектирована машина БЭСМ, а в 1952 году началась её эксплуатация. В проекте вначале предлагалось использовать трубки Вильямса, но до 1955 г. в качестве элемента памяти использовали ртутные линии. БЭСМ могла совершать 8 000 оп/с. Серийно она стала выпускаться с 1956 года под названием БЭСМ-2. [править]Транзисторные ЭВМ В середине 50-ых гг. XX века, когда ламповые компьютеры достигли «насыщения», ряд фирм объявил о работах по созданию транзисторных ЭВМ. Первоначально это вызвало скептицизм из-за того, что производство полупроводников будет сложным и дорогостоящим. Однако этого не случилось — постоянно совершенствовались методы производства транзисторов. В 1955 году в США было объявлено о создании цифрового компьютера TRADIC, построенного на 800 транзисторах и 11 000 германиевых диодах. В этом же году фирма объявила о создании полностью транзисторной ЭВМ. Первая такая машина «Philco-2000» была сделана в ноябре 1958 года, она содержала 56 тыс. транзисторов, 1 200 диодов, но всё же в её составе было 450 электронных ламп. «Philco-2000» выполняла сложение за 1,7 мкс, умножение — за 40,3 мкс. В Англии транзисторная ЭВМ «Elliot-803» была выпущена в 1958 году, в ФРГ — «Simens-2002» и в Японии H-1 — в 1958 году, во Франции и Италии — в 1960 году. В СССР группа разработчиков во главе с Е. Л. Брусиловским в 1960 году в НИИ математических машин в Ереване завершила разработку полупроводниковой ЭВМ «Раздан-2», её серийный выпуск начат в 1961 году. В это же время появились компьютеры и не на полупроводниках. Так, в Японии была выпущена ЭВМ «Senac-1» на параметронах, в СССР — «Сетунь», а во Франции — CAB-500 на магнитных элементах. «Сетунь», разработанная в МГУ под руководством Н. П. Брусенцова, стала единственной серийной ЭВМ, работавшая в троичной системе счисления. Значительным событием в конструировании машин второго поколения стали ЭВМ «Atlas» (выпущена в Англии в 1961 году), в которой были применены концепции виртуальной (кажущейся) памяти, «Stretch» и CDC-6600 (США) и БЭСМ-6 (СССР). В 1960 году фирма IBM разработала мощную вычислительную систему «Stretch» (IBM-7030), разработчики которой добились 100-кратного увеличения быстродействия: в её состав входило 169 тыс. дрейфовых транзисторов с тактовой частотой переключения в 100 МГц. Большой вклад в развитие компьютеров второго поколения внесла фирма Control Data, разработавшая в 1960 году ЭВМ CDC-6600 (первый образец был установлен в Лос-Анжелесе в 1964 г.). В архитектуре CDC-6600 было использовано новое решение — многопроцессорная обработка: многочисленные арифметико-логические устройства с десятью периферийными процессорами, что обеспечивало машине производительность более чем 3 млн. оп/с. В СССР после выпуска первой серийной ЭВМ второго поколения «Раздан-2» было разработано ещё около 30 моделей по такой же технологии. Минским заводом вычислительной техники им. Серго Орджоникидзе в 1963 году была выпущена первая транзисторная ЭВМ «Минск-2», а затем её модификации: «Минск-22», «Минск-22М», «Минск-23» и в 1968 году — «Минск-32», которые долгое время играли главную роль в автоматизации различных отраслей народного хозяйства. В Институте кибернетики АН УССР под руководством В. М. Глушкова в 60-е гг. ХХ века разработан ряд различных малых машин: «Проминь» (1962 г.), «Мир», «Мир-1» (1965 г.) и «Мир-2» (1969 г.) — впоследствии применяемых в вузах и научно-исследовательских организациях. В 1964 году в Ереване также были созданы малые ЭВМ серии «Наири», отличающихся от ЭВМ «Мир» некоторыми структурными особенностями. В том же году в Пензе была разработана и пущена в производство серия машин «Урал» (главный конструктор Б. И. Рамеев), позже в 1965 и 1967 гг. появились модификации — «Урал-11» и «Урал-16». ЭВМ серии «Урал» имели унифицированную систему связи с периферийными устройствами. Машина МЭСМ-6 состояла из 60 тыс. транзисторов и 200 тыс. полупроводниковых диодов, имела высокую надёжность и высокое быстродействие — 1 млн. оп/с. При появлении ЭВМ второго поколения разработчики занялись разработкой и создание языков программирования, обеспечивающих удобный набор программ. Одним из первых языков программирования был АЛГОЛ (создан группой ученых американской Ассоциацией по вычислительной техники).. [править]Эпоха интегральных схем В декабре 1961 года специальный комитет фирмы IBM, изучив техническую политику фирмы в области разработки вычислительной техники, представил план-отчёт создания ЭВМ на микроэлектронной основе. Во главе реализации плана встали два ведущих разработчика фирмы — Д. Амдал и Г. Блау. Работая с проблемой производства логических схем, они предложили при создании семейства использовать гибридные интегральные схемы, для чего при фирме в 1963 году было открыто предприятие по их выпуску. В начале апреля 1964 года фирма IBM объявила о создании шести моделей своего семейства IBM-360 («System-360»), появление которого ознаменовало появление компьютеров третьего поколения. За 6 лет существования семейства фирма IBM пустила более 33 тыс. машин. Затраты на научно-исследовательские работы составили примерно полмиллиарда долларов (по меркам того времени — сумма была просто огромной). При создании семейства «System-360» разработчики встретились с трудностями при создании операционной системы, которая должна была отвечать за эффективное размещение и использование ресурсов ЭВМ. Первая из них, универсальная операционная система называлась DOS, предназначенная для малых и средних ЭВМ, позже была выпущена операционная система OS/360 — для больших. До конца 60-х гг. фирма IBM в общей сложности выпустила более 20 моделей семейства IBM-360. В модели 85 впервые в мире был применена кэш-память (от фр. cache — тайник), а модель 195 стала первой ЭВМ на монолитных схемах. В конце 1970 года фирма IBM стала выпускать новое семейство вычислительных машин — IBM-370, которой сохранило свою совместимость с IBM-360, но и имело ряд изменений: они были удобны для комплектования многомашинных и многопроцессорных вычислительных систем, работающих на общем поле оперативной памяти. Почти одновременно с IBM компьютеры третьего поколения стали выпускать и другие фирмы. В 1966—1967 гг. их выпускали фирмы Англии, ФРГ и Японии. В Англии фирмой ICL был основан выпуск семейства машин «System-4» (производительность от 15 до 300 тыс. оп/с). В ФРГ были выпущены машины серии 4004 фирмы Siemens (машины этого семейства полностью копировали ЭВМ семейства «Spectra-70»), а в Японии — машины серии «Hytac-8000», разработанные фирмой Hitachi (это семейство являлось модификацией семейства «Spectra-70»). Другая японская фирма Fujitsu в 1968 году объявила о создании серии ЭВМ «FACOM-230». В Голландии фирма Philips Gloeilampenfabriken, образованная в 1968 году для выпуска компьютеров, стала выпускать компьютеры серии P1000, сравнимой с IBM-360. В декабре 1969 года ряд стран (НРБ, ВНР, ГДР, ПНР, СССР и ЧССР, а также в 1972 году — Куба, а в 1973 году — СРР) подписали Соглашение о сотрудничестве в области вычислительных технологий. На выставке «ЕСЭВМ-73» (1973 г.) были показаны первые результаты этого сотрудничества: шесть моделей компьютеров третьего поколения и несколько периферийных устройств, а также четыре ОС для них. С 1975 года начался выпуск новых модернизированных моделей ЕС-1012, ЕС-1022, ЕС-1032, ЕС-1033, имеющих наилучшее соотношение производительность/стоимость, в которых использовались новые логические схемы и схемы полупроводниковой памяти. Вскоре появились машины второй серии сотрудничества. Наиболее ярким представителем его была мощная модель ЕС-1065, представлявшая собой многопроцессорную системы, состоящую из четырех процессоров и имевшую память 16 Мбайт. Машина была выполнена на интегральных схемах ИС-500 и имела производительность 4—5 млн. оп/с. С машинами третьего поколения связано ещё одно значительное событие — разработка и внедрение визуальных устройств ввода-вывода алфавитно-цифровой и графической информации с помощью электронно-лучевых трубок — дисплеев, использование которых позволило достаточно просто реализовать возможности вариантного анализа. История появления первых прототипов современных дисплеев относится к послевоенным годам. В 1948 году Г. Фуллер, сотрудник лаборатории вычислительной техники Гарвардского университета, описал конструкцию нумероскопа. В этом приборе, под руководством ЭВМ, на экране электронно-лучевой трубки появлялась цифровая информация. Дисплей принципиально изменил процесс ввода-вывода данных и упростил общение с компьютером. В 70-ых гг. XX века благодаря появлению микропроцессоров стало возможным осуществлять буферизацию как данных, принимаемых с экранного терминала, так и данных, передаваемых ЭВМ. Благодаря чему регенерацию изображения на экране удалось реализовать средствами самого терминала. Появилась возможность редактирования и контроля данных перед их передачей в ЭВМ, что уменьшило число ошибок. На экране появился курсор — подвижная метка, инициализирующая место ввода или редактирования символа. Экран дисплея стал цветным. Появилась возможность отображения на экране сложных графических изображений — это дало возможность для создания красочных игр (хотя первые компьютерные игры появились ещё в 1950-е, но были псевдографическими) и предназначенных для работы с графикой программ. [править]Четвёртое поколение Это поколение ЭВМ связано с развитием микропроцессорной техники. В 1971 году компания Intel выпустила микросхему Intel-4004 — первый микропроцессор и родоначальник доминирующего и самого известного сегодня семейства. История четвёртого поколения началось с того, что японская фирма Busicom (ныне уже не существует) заказала Intel Corporation изготовить 12 микросхем для использования их в калькуляторах различных моделей. Малый объём каждой партии микросхем увеличивал стоимость их разработки. Однако разработчикам удалось создать такое устройство — микропроцессор, который мог использоваться во всех микрокалькуляторах. Его тактовая частота — около 0,75 МГц. Процессор был четырёхразрядным, то есть позволял кодировать все цифры и специальные символы, что было достаточно для калькулятора. Однако компьютеры работают не только с цифрами, но и с текстом. Для того чтобы закодировать все цифры, буквы и специальные символы, потребовался бы 8-разрядный процессор. Он появился в 1972 году и назывался Intel-8008, а в 1974 году появился процессор Intel-8080. Он был выполнен по NMOS-технологии (англ. N-cannel Metal Oxide Semiconductor), его тактовая частота составила 2 МГц, при этом в самом микропроцессоре было реализовано деление чисел. Таким образом, история развития электроники подошла к созданию персональных компьютеров (ПК). Во второй половине 70-х гг. появилась потребность в компьютерах для одного рабочего места. Первые такие ПК базировались на 8-разрядных процессорах — Intel-8080 и процессорах фирмы Zilog Corporation — Z80. ОС для них разработала компания Digital Research CP/M (англ. Control Program for Microcomputers). Создателями первого ПК были два молодых американских техника: Стивен Джобс, работавший в фирме Atari, и Стив Возняк из компании HewlettPackard. Летом 1976 года в гараже родителей Джобса они соорудили первый ПК и назвали его «Apple-I» — «яблоко». Для того чтобы достать необходимые детали Джобсу пришлось продать свой автомобиль «Фольксваген». Apple-I не имел ни клавиатуры, ни корпуса. В апреле 1977 года они сконструировали ещё один ПК — Apple-II (в это же время появилась и знаменитая эмблема фирмы Apple — надкушенное разноцветное яблоко), он имел одноплатную конструкцию и шину расширения, позволяющую подсоединять дополнительные устройства. Клавиатура была помещена в отдельный корпус. В качестве центрального процессора был взят надёжный 8-разрядный 6502. Память составляла всего лишь 8 Кбайт, но для её увеличения использовалась магнитофонная лента, запускаемая с обычного кассетного магнитофона. В дальнейшем к Apple-II были разработаны графические видеоадаптеры, дисковая ОС для управления ОП и нижний регистр для символов, который могли размешаться на экране в 80 столбцах. За 10 с не большим лет ПК фирмы Apple (образована в 1977 году) завоевал рынок — было продано более 2 млн. экземпляров. Цена его колебалась в районе 1000 долларов. Своим коммерческим успехом он обязан в значительной степени его открытой архитектуре и модульной системе, позволяющей расширять системы за счёт добавления новых устройств. К 1980 году стал очевиден успех идеи ПК. Их рынок достиг нескольких десятков тысяч в год. Крупнейшая электронная корпорация США IBM, лидер в производстве компьютеров, уже совершила одну стратегическую ошибку, уступив рынок мини-ЭВМ компании Digital Equipment Corporation (DEC). Ещё одним поводом для беспокойства стал успех компьютеров фирмы Apple Computer. И IBM решает быстро захватить рынок ЭВМ. Сомнений не было, что для этого нужно создать новую модель ПК. Для этого нужен был новый процессор (взамен устаревшего 6502 или Z80) — им стал процессор Intel-8088. В 1976 году компания Intel начала усиленно работать над микропроцессором Intel-8086. Размер его регистров был увеличен вдвое, что дало возможность увеличить в 10 раз производительность по сравнению с 8080. Кроме того, размер адресной шины был увеличен до 16 бит, чем опередил своё время — ему дополнительно нужна 16-разрядная микросхема. В 1979 году был разработан новый процессор — Intel-8088, не отличавшийся от своего предшественника, но он имел 8-разрядную шину данных — это позволяло использовать популярные в то время 8-разрядные микросхемы. Первоначально процессор работал частотой в 4,77 МГц, но впоследствии другие фирмы разработали совместимые с ним 8- и 10-мегагерцовые процессоры. Итак, 12 августа 1981 года IBM впервые представила свой ПК, который так и назывался IBM PC (англ. Personal Computer). Он имел процессор Intel-8088, два дисковода для гибких дисков по 160 Кбайт и ОП 64 КБайт с возможностью расширения до 512 Кбайт. В ПЗУ PC был помещён язык программирования Бейсик. IBM разработала свой собственный дисплей, который имел хорошую контрастность, символы на нём легко читали и не утомляли глаз мерцанием. В 1983 году IBM выпустила новую модель PC XT (англ. eXtended Technology) с жестким диском — винчестером — емкостью 10 Мбайт и ОП 640 Кбайт. Работал PC под управлением MS DOS компании Microsoft — ныне крупнейшего производителя программного обеспечения. К 1982 году невероятная популярность нового компьютера привела к созданию многочисленных аналогов. К 1984 году IBM-совместимых компьютеры выпускали более 50 компаний, а в 1986 году объём продаж клонов превысил собственный объем продаж фирмы IBM. Архитектура IBM PC завоевала весь мир: никакой другой фирме, будь то Apple Macintosh, NeXT, Amiga или другим, не удалось занять место рядом с IBM. Презентация нового PC — IBM PC AT (англ. Advanced Technology) — состоялась в 1984 году. AT был построен на основе нового микропроцессора — Intel-80286, который был представлен в 1982 году. Микропроцессор имел 16-разрядную шину данных и 16-битный внутренние регистры. Первый Intel-80286 работал на частоте в 6 МГц, впоследствии доведенной до 20 МГц. В общем, AT в 5 раз был производительнее, чем XT. Главным преимуществом Intel-80286 была способность работать с дополнительной памятью. Он имел 24-разрядную адресную шину, что позволяло работать с ОП до 16 Мбайт. Intel-80286 мог работать с виртуальной памятью размером до 1 Гбайта. Тем временем в январе 1984 г. состоялась презентация первого компьютера Macintosh компании Apple Computer. Эти компьютеры сыграли значительную роль в развитие PC. Он имел 9-дюймовый монитор с чрезвычайно высокой четкостью изображения и занимал мало места на рабочем столе, число соединительных кабелей в системе было минимальным. В качестве центрального процессора был использован микропроцессор 68000 компании Motorola, в последующих моделях был использован микропроцессор Motorola 68030, а в некоторых они использовались совместно с математическим сопроцессором, а также цветной монитор. Такие PC были очень удобны в домашней работе. В 1985 году компания Intel анонсировала первый 32-разрядный процессор Intel-80386 (Intel-80386DX). Он имел все положительные качества своих предшественников. Вся система команд Intel-80286 полностью совместима с набором команд 386-го. Новый процессор был полностью 32-разрядным и работал на частоте в 16 МГц (позже появились PC с 25, 33 и 40 МГц). С увеличением шины данных до 32 бит число адресных линий было также увеличено до 32, что позволило микропроцессору обращаться прямо к 4 Гбайт физической памяти или к 64 Тбайт (1 Терабайт = 1024 Гбайт) виртуальной памяти. Для поддержания совместимости с Intel-8086 процессор работал в защищённом режиме (англ. Protect mode), также поддерживался реальный режим (англ. Real mode), основным отличием была возможность переходить из одного режима работы в другой без перезагрузки компьютера. Появился также новый режим — виртуальный (англ. Virtual mode) — позволявший микропроцессору работать так же, как и неограниченное количество Intel-8086. Это давало возможность процессору выполнять сразу несколько программ. Первая персональная ЭВМ на основе Intel-80386 была изготовлена фирмой Compaq Computers. В апреле 1987 года IBM объявила о создании семейства PS/2 с шиной MCA (англ. MicroChannel Architecture). До этого компьютеры PC AT использовали шину ISA (англ. Industry Standard Architecture). Она была 32-разрядная и имела частоту 10 МГц. В 1989 году девять компаний-клонмэйкеров (AST, Epson, HewlettPackard, NEC, Olivetti, Tandy, Wyse и Zenith) разработали шины EISA (англ. Extended Industry Standard Architecture). Она, как и MCA, она имела разрядность 32, но в отличие от нее EISA была полностью совместима с ISA. В 1988 году компанией Intel был разработан микропроцессор Intel-80386SX, в общем, ничем не отличавшийся от Intel-80386DX, однако он стоил дешевле и использовал 16-разрядную внешнюю шину данных. [править]Пятое поколение В 1989 году появляется новая разработка компании Intel — микропроцессор Intel-80486 (Intel-80486DX). Этот процессор ознаменовал начала пятого поколения. Этот процессор был полностью совместим с PC семейства Intel-80x86, кроме того, содержал в себе математический сопроцессор и 8 Кбайт кэш-памяти. Этот процессор был более совершенен по сравнению с микропроцессором Intel-80386, его тактовая частота состояла 33 МГц. В 1991 году Intel представила процессор Intel-80486SX, у которого отсутствовал математический сопроцессор. А в 1992 году — процессор Intel-80486DX2, работавший с удвоенной тактовой частотой — 66 МГц. Впоследствии вышли процессоры с тактовой частотой в 100 МГц. Кроме компании Intel 486-е процессоры стали выпускать и другие фирмы, например фирмы AMD (англ. Advanced Micro Devices) и Cyrix. Эти фирмы вносили некоторые усовершенствования в них и продавали по цене от 100 долларов. Вскоре для 486-ых систем стала стандартом шина VL-Bus, разработанная ассоциацией VESA (Video Electronics Standard Association). Пропускная способность составила 132 Мбайт/с. Создание компьютеров на основе процессоров семейства Intel-80486 позволило многочисленное программное обеспечение. Второе место после PC фирмы IBM занимает фирма Apple Computer с PC Macintosh. Компьютеры выпускались на основе процессоров фирмы Motorola. Эти компьютеры очень удобны при использовании дома, в офисе и для обучения в школе. Последние модели — LC 475, LC 575 и LC 630 — основанные на процессорах Motorola 68LC040, оснащаются дисководом CD-ROM. Самые производительные компьютеры Macintosh серии Quadra, оснащались процессором 68040 с тактовой частотой до 33 МГц, сопроцессором, имели возможность расширения ОЗУ до 256 Мбайт. Quadra в основном использовались в полиграфическом и рекламном деле, а также в создании мультимедиа-приложений и других задачах, требующих больших вычислительных мощностей и обработки значительных объемов данных; они также подходят для создания программного обеспечения. С 1993 года выпускаются компьютеры подсемейства AV, которые имели стандартный видеовходы и видеовыходы, что давало возможность выводить информацию, как на экран стандартного дисплея, так и на экран обычного телевизора. Кроме вышеперечисленных моделей Apple Computer выпускает портативные компьютеры серии PowerBook. Наибольшую популярность завоевали компьютеры семейства Performa, которые оснащались факс-модемом, что, было удобно для надомной работы. В 1993 году компания Intel начала промышленный выпуск нового процессора — Intel Pentium (Intel не стал присваивать ему номер 80586). Первые модели работали на тактовой частоте 60 и 66 МГц и объединяли в себе до 3,3 млн. транзисторов. Pentium — это первый 64-разрядный суперскалярный процессор с RISC-ядром, изготовленный по 0,8-микронной технологии BiCMOS. Его основу составляет два пятиступенчатых конвейера, позволяющих выполнять две команды за один такт. Один конвейер выполнял любые операции, как с целочисленными, так и с числами с плавающей точкой, второй выполняет часть целочисленных команд. Все арифметические действия — сложение, вычитание, умножение и деление — реализованы аппаратно. Сочетание этих решений резко повысило производительность процессора, ускорить вычисления за счёт уменьшения обращений к ОЗУ. Обеспечивают два внутренних буфера кэш-памяти — по 8 Кбайт для команд и данных, что позволило работать контейнерам команд не только по чтению, но и по записи. Следующая новинка — система предсказываний ветвлений, благодаря которой при переходе в области памяти запоминается адрес перехода и при повторном обращении переход по этому адресу происходит быстрее. Впоследствии появились модели с частотой 90 и 100 МГц. Однако вскоре обнаружилась ошибки в устройстве деления, и компании Intel пришлось опубликовать подробное описание этого дефекта. После этого скандала практически все процессоры Pentium стали тестировать, и в прайс-листах появилась надпись BUG FREE!, что буквально можно перевести как «свободно от ошибок» 8 вопрос |
Центра́льный проце́ссор (ЦП, или центральное процессорное устройство — ЦПУ; англ. central processing unit, сокращенно — CPU, дословно — центральное обрабатывающее устройство) — электронный блок либо микросхема — исполнитель машинных инструкций (кода программ), главная часть аппаратного обеспечения компьютера или программируемого логического контроллера. Иногда называют микропроцессором или просто процессором. Изначально термин центральное процессорное устройство описывал специализированный класс логических машин, предназначенных для выполнения сложныхкомпьютерных программ. Вследствие довольно точного соответствия этого назначения функциям существовавших в то время компьютерных процессоров, он естественным образом был перенесён на сами компьютеры. Начало применения термина и его аббревиатуры по отношению к компьютерным системам было положено в 1960-е годы. Устройство, архитектура и реализация процессоров с тех пор неоднократно менялись, однако их основные исполняемые функции остались теми же, что и прежде.
Главными характеристиками ЦПУ являются: тактовая частота, производительность, энергопотребление, нормы литографическогопроцесса используемого при производстве (для микропроцессоров) и архитектура.
Ранние ЦП создавались в виде уникальных составных частей для уникальных, и даже единственных в своём роде, компьютерных систем. Позднее от дорогостоящего способа разработки процессоров, предназначенных для выполнения одной единственной или нескольких узкоспециализированных программ, производители компьютеров перешли к серийному изготовлению типовых классов многоцелевых процессорных устройств. Тенденция к стандартизации компьютерных комплектующих зародилась в эпоху бурного развития полупроводниковых элементов, мейнфреймов и миникомпьютеров, а с появлением интегральных схем она стала ещё более популярной. Создание микросхем позволило ещё больше увеличить сложность ЦП с одновременным уменьшением их физических размеров. Стандартизация и миниатюризация процессоров привели к глубокому проникновению основанных на них цифровых устройств в повседневную жизнь человека. Современные процессоры можно найти не только в таких высокотехнологичных устройствах, как компьютеры, но и в автомобилях, калькуляторах,мобильных телефонах и даже в детских игрушках. Чаще всего они представлены микроконтроллерами, где помимо вычислительного устройства на кристалле расположены дополнительные компоненты (память программ и данных, интерфейсы, порты ввода/вывода, таймеры и др.). Современные вычислительные возможности микроконтроллера сравнимы с процессорами персональных ЭВМ десятилетней давности, а чаще даже значительно превосходят их показатели.
10 вопрос
Видеомонитор – устройство системы видеонаблюдения, на котором производится визуализация картинок от видеокамер наблюдения или видеосигнала с записывающего устройства (видеорегистратора). По способу исполнения видеомониторы делятся на ЭЛТ-мониторы (приборы сконструированные на базе электро-лучевой трубки) и TFT(LCD)-мониторы, выполненные на базе жидкокристаллического экрана. ЭЛТ-мониторы в свою очередь делятся на цветные и чернобелые. Постепенно LCD-мониторы вытесняют своих старших предшественников, несмотря на то что они пока что еще дороже своих старших собратьев. К основным характеристикам видеомониторов можно отнести следующие:
1. Размер диагонали видеомонитора (измеряется в дюймах). Как правило, в современных системах видеонаблюдения используют видеомониторы с диагоналями от 17 дюймов и выше.
2. Разрешение видеомонитора: у ЭЛТ мониторов измеряется в ТВЛ (телевизионных линиях), изображение LCD-видеомониторов задается в пикселях (точках, выводимых на лицевую часть экрана жидкокристаллической матрицей).
3. Формат входного сигнала видеомонитора. Через разъемы BNC, VGA, S-VHS сигнал поступает на вход видеомонитора с различным качеством.
11 вопрос
Дополнительные устройства могут быть внутренними (вставляют в системный блок) или внешними (подключаются снаружи с помощью разъемов). Внутреннее дополнительное оборудование рассматривалось в статье «Устройство системного блока: часть 2». К нему можно отнести видеокарту, звуковую карту, сетевую плату, дисководы. Почему я говорю, что «можно отнести» к внутреннему оборудованию? Просто потому что развитие технологий идет настолько быстро, что «всё тайное становится явным» и многие внутренние компоненты системного блока теперь можно сделать внешними. Это относится к видеокарте, звуковой карте, сетевой плате, дисководам и даже к винчестеру.
Д ополнительное оборудование называют периферийным оборудованием или сокращенно периферия. Рассмотрим примеры периферийного оборудования.
Внешний модем
Начнем с компьютерного модема. Модем соединяет компьютер с Интернетом посредством обычного телефонного кабеля. Соответственно прием и передача данных идет через телефонную сеть.
Более современный аналог для подключения к Интернету – это модем для ADSL, который работает намного быстрее своего старшего собрата и является внешним устройством.
Есть масса других возможностей подключиться к Интернету, например, с помощью беспроводных модемов Yota, Sky Link, Мегафон и т.д.
Кроме того, модем необходим для подключения факса к компьютеру и он, как правило, устанавливается внутри системного блока (факс-модем).
Принтер предназначен для печати текстовой и графической информации на бумаге. Бывают матричные, струйные и лазерные принтеры, а по цвету печати — чёрно-белые (монохромные) и цветные.
Процесс печати называется вывод на печать, а получившийся документ — распечатка или твёрдая копия.
Матричные принтеры являются ветеранами печати, так как появились значительно раньше струйных и лазерных принтеров. Как все старые фильмы являются черно-белыми из-за технологий своего времени, так и матричные принтеры являются черно-белыми. Многие считают их устаревшими. Однако матричные принтеры все еще активно используются для печати там, где применяется непрерывная подача бумаги (в рулонах), а именно, в банках, в бухгалтериях, в лабораториях, в библиотеках для печати на карточках и т.п.
Струйные принтеры могут быть цветными или черно-белыми. Они печатают на бумаге с помощью краски, которую берут из картриджей.Недостаток струйных принтеров – дорогая печать, чернила с бумаги обычно смываются водой. Когда краска в картридже заканчивается, надо покупать новый картридж, либо отдавать старый на заправку.
Лазерные принтеры также бывают цветными и черно-белыми. Они печатают с помощью лазерного луча. Лазерный луч запекает на бумаге тонер, который попадает из картриджа на бумагу. Эти картриджи заправлены тонером (порошком). Лазерные принтеры имеют высокую скорость печати и не дорогой по себестоимости отпечатанный лист.
Сканер предназначен для ввода информации с бумаги в компьютер. Выполняет функции, противоположные принтеру. Если принтер распечатывает картинку с компьютера на бумагу, то сканер, наоборот, переводит изображение с бумаги на экран.
Часто принтер со сканером объединены в одном устройстве, которое называют просто принтером.
Блок бесперебойного питания для компьютера называют источником бесперебойного питания (сокращенно ИБП). Он незаменим, если есть проблемы с энергоснабжением. Электросети перегружены, и отключения электричества, к сожалению, становятся нормой. Ноутбук при этом переходит на питание от собственной встроенной батарейки. А для стационарных компьютеров необходим ИБП: он на некоторое время (как правило — непродолжительное) после выключения электричества или скачка напряжения сохраняет подачу электроэнергии для компьютера. Это позволяет сохранить все свои наработки и корректно выключить компьютер.
Акустические колонки подключаются к компьютеру через звуковую карту. В принципе, можно обойтись и без них. Но для прослушивания музыки, просмотра фильмов звуковые колонки являются незаменимыми.
ТВ-тюнер для компьютера позволяет воспроизводить телевизионный сигнал (с антенны или кабеля) на компьютере и записывать на него телепередачи. Бывают внешние и внутренние ТВ-тюнеры. Обычно внутренний ТВ-тюнер применяют при необходимости использования компьютера в качестве телевизора. Внешний ТВ-тюнер используют для превращения монитора в телевизор, при этом системный блок не нужен.
Skype (читается Скайп) для компьютера — это бесплатные звонки с одного компьютера на другой, при этом возможна видеосвязь. Платно можно звонить с компьютера и на обычные телефоны, при этом получится дешевле, чем звонить с телефона на телефон по междугородней или международной связи.
Флешка ( Flash Drive) – это устройство для хранения информации с возможностью многократной перезаписи. Иногда ее называют флешка USB, потому что она подключается к компьютеру через USB-порт.
Очень удобная вещь: ведь теперь не надо носить с собой кучу дискет или компакт-диски, например, для переноса информации с одного компьютера на другой. Объем флешки может достигать до 128 гигабайт. Думаю, что это не предел, со временем будут еще более вместительные флешки!
В последнее время уже не редкость встретить человека, который вместо флешки достает внешний жесткий диск. Очень удобная вещь, особенно, если у Вас ноутбук! Работает по принципу: "Просто включил и работает!" При этом не надо разбирать компьютер, чтобы заменить винчестер на более ёмкий или для того, чтобы к имеющемуся винчестеру добавить второй, внутренний, винчестер.
Правда, такая простота и мобильность в использовании внешнего жесткого диска обойдется Вам дороже, чем замена старого или добавление второго внутреннего винчестера в Ваш системный блок. Внешний винчестер, как правило дороже внутреннего, но удобнее, в том числе, для резервного копирования Вашей ценной информации!
Разница внешнего винчестера и флешки в объеме информации, которую можно на них разместить. Есть внешние винчестеры, которые больше терабайта. Однако плюсом флешки остается ее маленький размер - можно в карман положить.
14 вопрос
Компью́терный ви́рус — разновидность компьютерных программ или вредоносный код, отличительной особенностью которых является способность к размножению (саморепликация). В дополнение к этому вирусы могут без ведома пользователя выполнять прочие произвольные действия, в том числе наносящие вред пользователю и/или компьютеру. Даже если автор вируса не программировал вредоносных эффектов, вирус может приводить к сбоям компьютера из-за ошибок, неучтённых тонкостей взаимодействия с операционной системой и другими программами. Кроме того, вирусы обычно занимают некоторое место на накопителях информации и отбирают некоторые другие ресурсы системы. Поэтому вирусы относят к вредоносным программам.
Неспециалисты ошибочно относят к компьютерным вирусам и другие виды вредоносных программ - программы-шпионы и даже спам.[1] Известны десятки тысяч компьютерных вирусов, которые распространяются через Интернет по всему миру.
Классификация:
Ныне существует немало разновидностей вирусов, различающихся по основному способу распространения и функциональности. Если изначально вирусы распространялись на дискетах и других носителях, то сейчас доминируют вирусы, распространяющиеся через Интернет. Растёт и функциональность вирусов, которую они перенимают от других видов программ.
В настоящее время не существует единой системы классификации и именования вирусов (хотя попытка создать стандарт была предпринята на встрече CARO в 1991 году). Принято разделять вирусы:
§ по поражаемым объектам (файловые вирусы, загрузочные вирусы, скриптовые вирусы, макровирусы, вирусы, поражающие исходный код);
§ по поражаемым операционным системам и платформам (DOS, Microsoft Windows, Unix, Linux);
§ по технологиям, используемым вирусом (полиморфные вирусы, стелс-вирусы, руткиты);
§ по языку, на котором написан вирус (ассемблер, высокоуровневый язык программирования, скриптовый язык и др.);
§ по дополнительной вредоносной функциональности (бэкдоры, кейлоггеры, шпионы, ботнеты и др.).
15 вопрос
Антивирусная программа (антивирус) — любая программа для обнаружения компьютерных вирусов, а также нежелательных (считающихся вредоносными) программ вообще и восстановления зараженных (модифицированных) такими программами файлов, а также для профилакти