Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Потоки событий. Уравнения Колмогорова




Теория систем массового обслуживания

Основные понятия и классификация систем массового

Обслуживания

При решении задач рациональной организации торговли, бытового обслуживания, складского хозяйства и т.д. весьма полезной бывает интерпретация деятельности производственной структуры как системы массового обслуживания (СМО), т.е. системы в которой, с одной стороны, постоянно возникают запросы на выполнение каких-либо работ, а с другой – происходит посто­янное удовлетворение этих запросов. Главной особенностью процессов массового обслуживания является случайность.

Всякая СМО включает четыре элемента: входящий поток требований, их очередь на обслуживание, обслуживающее устройство, выходящий поток обслуженных требований.

Требованием (клиентом, заявкой) в СМО называется каж­дый отдельный запрос на выполнение какой-либо работы. Обслуживание — это выполнение работы по удовлетворе­нию поступившего требования. Объект, выполняющий обслужи­вание требований, называется обслуживающим устройством (прибором) или каналом обслуживания.

Временем обслуживания называется период, в течение ко­торого удовлетворяется требование на обслуживание, т.е. пери­од от начала обслуживания и до его завершения. Период от мо­мента поступления требования в систему и до начала обслужи­вания называется временем ожидания обслуживания. Время ожидания обслуживания в совокупности с временем обслужива­ния составляет время пребывания требования в системе.

СМО классифицируются по разным признакам.

1. По числу каналов обслуживания СМО делятся на одноканальные и многоканальные.

2. В зависимости от условий ожидания требованием нача­ла обслуживания различают СМО с потерями (отказами) и СМО с ожиданием.

В СМО с потерями требования, поступившие в момент, когда все приборы заняты обслуживанием, получают отказ, они теряются для данной системы и никакого влияния на дальней­ший процесс обслуживания не оказывают. Классическим приме­ром системы с отказами является телефонная станция – требо­вание на соединение получает отказ, если вызываемый абонент занят. Для системы с отказами основной характеристикой эффек­тивности функционирования является вероятность отказа или средняя доля заявок, оставшихся необслуженными.

В СМО с ожиданием требование, поступившее в момент, когда все приборы заняты обслуживанием, не покидает систему, а становится в очередь и ожидает пока не освободится один из каналов. При освобождении очередного прибора одна из заявок, стоящих в очереди, немедленно принимается на обслуживание.

Для СМО с ожиданием основными характеристиками яв­ляются математические ожидания длины очереди и времени ожидания. Примером системы с ожиданием может служить процесс восстановления телевизоров в ремонтной мастерской.

Встречаются системы, лежащие между указанными двумя группами (смешанные СМО). Для них характерно наличие не­которых промежуточных условий: ограничениями могут быть ограничения по времени ожидания начала обслуживания, по длине очереди и т.п.

В качестве характеристик эффективности может приме­няться вероятность отказа как в системах с потерями (или харак­теристики времени ожидания) и в системах с ожиданием.

3. По дисциплине обслуживания СМО делятся на систе­мы с приоритетом в обслуживании и на системы без приоритета в обслуживании.

Требования могут обслуживаться в порядке их поступле­ния либо случайным образом, либо в зависимости от установлен­ных приоритетов.

4. СМО могут быть однофазными и многофазными. В однофазных системах требования обслуживаются кана­лами одного типа (например, рабочими одной профессии) без передачи их от одного канала к другому, в многофазных систе­мах такие передачи возможны.

5. По месту нахождения источника требований СМО де­лятся на разомкнутые (когда источник требования находится вне системы) и замкнутые (когда источник находится в самой сис­теме).

К замкнутым относятся системы, в которых поступающий поток требований ограничен. Например, мастер, задачей кото­рого является наладка станков в цехе, должен периодически их обслуживать. Каждый налаженный станок становится в будущем потенциальным источником требований на наладку. В подобных системах общее число циркулирующих требований конечно и чаще всего постоянно.

Если питающий источник обладает бесконечным числом требований, то системы называются разомкнутыми. Примерами подобных систем могут служить магазины, кассы вокзалов, пор­тов и т.п. Для этих систем поступающий поток требований можно считать неограниченным.

Методы и модели исследования СМО можно условно раз­бить на аналитические и статистические (имитационного моде­лирования процессов массового обслуживания).

Аналитические методы позволяют получить характеристи­ки системы как некоторые функции от параметров ее функционирования. Благодаря этому появляется возможность проводить качественный анализ влияния отдельных факторов на эффектив­ность работы СМО.

К сожалению, аналитическому решению поддается лишь довольно ограниченный круг задач теории массового обслужи­вания. Несмотря на постоянно ведущуюся разработку аналити­ческих методов, во многих реальных случаях аналитическое ре­шение либо невозможно получить, либо итоговые зависимости оказываются настолько сложными, что их анализ становится са­мостоятельной трудной задачей. Поэтому ради возможности при­менения аналитических методов решения приходится прибегать к различным упрощающим предположениям, что в некоторой степени компенсируется возможностью применения качествен­ного анализа итоговых зависимостей (при этом, разумеется, не­обходимо, чтобы принятые допущения не искажали реальной картины процесса).

 

Потоки событий. Уравнения Колмогорова

В настоящее время теоретически наиболее разработаны и удобны в практических приложениях методы решения таких за­дач массового обслуживания, в которых поток требований явля­ется простейшим (пуассоновским).

Для простейшего потока частота поступления требований в систему подчиняется закону Пуассона, то есть вероятность поступления за время t, ровно k требований задается форму­лой:

P k = e-λt

где λ – параметр потока (интенсивность – среднее число требований, поступивших в систему за единицу времени).

Простейший поток обладает тремя основными свойствами: ординарностью, стационарностью и отсутствием последействия.

Ординарность потока означает практическую невозмож­ность одновременного поступления двух и более требований. Например, достаточно малой является вероятность того, что из группы станков, обслуживаемых бригадой ремонтников, одно­временно выйдут из строя несколько станков.

Стационарным называется поток, вероятные характеристики которого не зависят от времени. Например, математи­ческое ожидание числа требований, поступающих в систему в единицу времени, является величиной постоянной и называется интенсивностью потока. Таким образом, вероятность поступления в систему определен­ного количества требований в течение заданного промежутка времени t зависит от его величины и не зависит от начала его отсчета на оси времени.

Отсутствие последействия означает, что число требований, поступивших в систему до момента t, не определяет того, сколько требований поступит в систему за время t + t.

Например, если на ткацком станке в данный момент про­изошел обрыв нити, и он устранен ткачихой, то это не опреде­ляет того, произойдет новый обрыв на данном станке в следую­щий момент или нет, тем более это не влияет на вероятность возникновения обрыва на других станках.

Вероятность того, что на временном интервале t = τ не поступит ни одного требования p 0 определяется как:

p 0 = e-λτ.

Тогда вероятность того, что на этом же временном интервале появится хотя бы одно требование определяется соотношением

p (t) = 1p 0 = 1e-λτ.

Вероятность попадания на элементарный временной интервал, т.е. когда τ = Δt, хотя бы одного события (требования) потока, можно определить, заменив функцию e-λτ двумя первыми числами её разложения в ряд Маклорена по степеням Δt. Действительно:

p (Δt) = 1e-λΔt ≈ λ Δt.

Важной характеристикой СМО является время обслужива­ния требований в системе. Время обслуживания является, как правило, случайной величиной и, следовательно, может быть описано законом распределения. Наибольшее распространение в теории и, особенно в практических приложениях, получил экс­поненциальный закон. Для этого закона функция распределения вероятностей имеет вид:

р (t <T)=F(t)=1 – е- t,

т.е. вероятность того, что время обслуживания не превосходит некоторой величины t, где μ – интенсивность потока обслуживания тре­бований в системе (среднее число требований, обслуженных в единицу времени).

Очевидно, что вероятность обслуживания хотя бы одного требования за элементарный временной отрезок будет определяться как:

p (Δt) = 1et ≈ μλ Δt.

При анализе случайных процессов с дискретными состояниями пользуются графиком состояний, где прямоугольником изображаются состояния, а переходы из состояния в состояние – стрелками. У стрелок обычно проставляются значения интенсивностей λijij) перехода системы из состояния S i в состояние S j, которые происходят под воздействием простейших потоков событий.

Рассмотрим систему, которая может находиться в двух состояниях: S0– система исправна; S1 – система находится в состоянии отказа и ремонтируется (рис. 8.1).

 
 

 

 


Рис. 8.1. Граф системы

Будем характеризовать состояние системы (S0,S1) вероятностями состояния р 0 (t) и р 1 (t). Очевидно, что

р 0 (t) + р 1 (t) = 1.

Найдем вероятность того, что система в момент (t+Δt) будет находиться в состоянии S0.

Это возможно, во-первых, в том случае, если система в момент времени t с вероятностью р 0(t) находилась в состоянии S0 и за время Δt из него не вышла. Вероятность выхода системы за время Δt из состояния S0 в состояние S1 определяется как λ· Δt. Противоположная вероятность (что система не выйдет из S0) определяется как (1 – λΔt). Вероятность того, что система, находившаяся в состоянии S0 с вероятностью р 0(t), за время Δt не выйдет из него, равна по теореме умножения вероятностей

р 0(t) (1 – λΔt).

 

 

Во-вторых, система в момент времени t находилась с вероятностью р 1(t) в состоянии S1 и за интервал времени Δt с вероятностью μ · Δt перешла в состояние S0, т.е.

р 1(tμΔt.

Вероятность р 0(t + Δt) нахождения системы в состоянии S0 момент времени (t + Δt) по какому-либо из двух рассмотренных способов равна сумме рассмотренных вероятностей

р 0(t + Δt) = р 0(t) (1 – λΔt)+ р 1(t) μΔt

Преобразуем соотношение к виду

Переходя к пределу при Δt→ 0, получим

По аналогии составляется уравнение, описывающее вероятность того, что система в момент (t + Δt) будет находиться в состоянии S1, но проще это найти из условия нормирования

р 0 (t) + р 1 (t) = 1.

С учетом этого условия система уравнений для двух состояний графа имеет вид

Задав начальные условия, можно решить систему уравнений и найти систему функций времени рi (t), где i – номер состояния.

Для достаточно большого значения t распределение вероятностей стабилизируется и практически не зависит от времени, т.е.

Тогда система уравнений упрощается (стационарный режим)

 

Откуда вероятности состояний установившегося процесса определяются как

В частности, если μ =2; λ =1, то Р0=0,67; Р1=0,33. Таким образом, в среднем система будет находиться в рабочем состоянии 67%, а в состоянии ремонта 33% времени.

В общем случае система уравнений Колмогорова может быть составлена по следующему алгоритму.

1. В левой части каждого уравнения стоит производная вероятности i -го состояния.

2. В правой части каждого уравнения стоит:

2.1. Сумма произведений вероятностей всех состояний, из которых идут стрелки в i -е состояние, на интенсивности соответствующих потоков событий.

2.2. Минус суммарная интенсивность всех потоков, выводящих систему из данного состояния, умноженная на вероятность i -го состояния.

Система Колмогорова состоит из независимых уравнений и условия нормирования.

 

СМО с ожиданием

Рассмотрим аналитические модели СМО с ожиданием (наиболее распространенные СМО, в которых требования, по­ступившие в момент, когда все обслуживающие единицы заня­ты, становятся в очередь и обслуживаются по мере освобожде­ния обслуживающих единиц).

Задачи с очередями являются типичными в производствен­ных условиях, например при организации наладочных и ремон­тных работ, при многостаночном обслуживании и т.д.

Постановка задачи в общем виде выглядит следующим образом.

Система состоит из n обслуживающих каналов. Каждый из них может одновременно обслуживать только одно требование. В систему поступает простейший (пуассоновский) поток требо­ваний с параметром . Если в момент поступления очередного требования в системе на обслуживании уже находится не мень­ше n требований (т.е. все каналы заняты), то это требование ста­новится в очередь и ждет начала обслуживания. Время обслуживания каждого требования t об является слу­чайной величиной, которая подчиняется экспоненциальному закону распределения с параметром .

Как отмечалось выше, СМО с ожиданием можно разбить на две большие группы: замкнутые и разомкнутые. Особенности функционирования каждой из этих двух ви­дов систем накладывают свой оттенок на используемый матема­тический аппарат. Расчет характеристик работы СМО различного вида может быть проведен на основе расчета вероятностей со­стояний СМО (формулы Эрланга).

 

Замкнутая СМО с ожиданием

Поскольку система замкнутая, то к постановке задачи сле­дует добавить условие: поток поступающих требований ограни­чен, т.е. в системе обслуживания одновременно не может нахо­диться больше m требований (m – число обслуживаемых объек­тов).

Такую систему можно классифицировать как многоканальную СМО (n – каналов) и ограниченной данной очереди l, причем n +l = m.

Граф состояний такой системы изображен на рис. 8.2.

 

 


Рис. 8.2. Граф состояний многоканальной СМО с ограниченной очередью

 

Состояния данной системы означают:

S0 – отсутствие требований в системе;

S1 – одно требование обслуживается, очереди нет;

S2 – два требования обслуживаются, очереди нет;

…………………………………………………….

Snn требований обслуживаются, очереди нет;

S n+ 1n требований обслуживаются, одно требование стоит в очереди;

…………………………………………………….

S n+ln требований обслуживаются, l требований стоят в очереди.

Система уравнений вероятностей состояний в стационарном режиме для цепочки S0 Sn будет:

Для цепочки состояний S n+ 1S n+l система уравнений стационарного режима будет:

В качестве основных критериев, характеризующих качество функционирования рассматриваемой системы, выберем: 1) от­ношение средней длины очереди к наибольшему числу требова­ний, находящихся одновременно в обслуживающей системе – коэффициент простоя обслуживаемого объекта; 2) отношение среднего числа незанятых обслуживающих каналов к их общему числу – коэффициент простоя обслуживаемого канала.

Рассмотрим расчет необходимых вероятностных характе­ристик (показателей качества функционирования) замкнутой СМО.

1. Вероятность того, что в системе находится k требований при условии, когда их число не превышает числа обслуживаю­щих аппаратов п:

P k = αk P0, (1 k n),

где αk = или αk = ;

;

– интенсивность поступления требований в си­стему от одного источника;

об – средняя продолжительность обслуживания одного требования;

т – наибольшее возможное число требований, находящих­ся в обслуживающей системе одновременно (m=n+l);

п – число обслуживающих аппаратов;

Р0 – вероятность того, что все обслуживающие аппараты свободны.

2. Вероятность того, что в системе находится k требований при условии, когда их число больше числа обслуживающих ап­паратов:

Pk= kP0, (n k m),

где k = ( об) k или αk = .

3. Вероятность того, что все обслуживающие аппараты сво­бодны, определяется из условия

4. Среднее число требований, ожидающих начала обслужи­вания (средняя длина очереди):

.

5. Коэффициент простоя требования в ожидании обслужи­вания:

a1= .

 

6. Вероятность того, что все обслуживающие аппараты заняты:

Pотк = .

7. Среднее число требований, находящихся в обслуживающей системе (обслуживаемых и ожидающих обслуживания):

A2= = .

8. Коэффициент полного простоя требований на обслуживании и в ожидании обслуживания:

a2= .

9. Среднее время простоя требования в очереди на обслуживание:

Tож= a 1 / .

10. Среднее число свободных обслуживающих аппаратов:

A3= .

11. Коэффициент простоя обслуживающих аппаратов:

a3 = .

12. Вероятность того, что число требований, ожидаю­щих обслуживания, больше некоторого числа В (вероятность того, что в очереди на обслуживание находится более В тре­бований):

P-B = = .

Рассмотрим пример расчета характеристик замкнутой СМО.

Пример 8.1. Оптовый склад строительных материалов обслу­живает шесть предприятий-потребителей материалов. Каждый из потребителей направляет на склад автомашину за мате­риалами в среднем один раз в смену (продолжительность сме­ны 8 ч). На складе имеется один автопогрузчик, который исполь­зуется только для погрузки материалов на прибывающие авто­машины. Прибывшая на склад автомашина становится в оче­редь, если автопогрузчик занят погрузкой другой автомашины. Обработка статистических данных о продолжительности погруз­ки одной автомашины и проверка соответствующей гипотезы по­казали, что продолжительность погрузки одной автомашины подчиняется показательному закону распределения и составля­ет в среднем 48 мин (0,1 смены). Статистическое исследование потока автомашин показа­ло, что число автомашин, поступающих на склад в единицу вре­мени, подчиняется пуассоновскому закону распределения. Требуется провести расчет характеристик функционирова­ния приведенной производственной системы как СМО.

Решение. Рассчитаем основные параметры системы для условий задачи.

Вероятность того, что все обслуживающие ап­параты свободны (на складе нет автомашин) определяется как P0, λ= 1, μ= 0,1.

Вероятность того, что на складе одна автомашина:

P 1 = 0,1 P 0 = 0,6 P 0,

а вероятность того, что на складе две автомашины (одна под погрузкой, а другая в очереди):

P 2 = 0,12 P 0 = 0,3 P0.

Рассчитывая аналогично, получим: Р 3=0,12 Р 0; Р 4 =0,036 Р 0; Р 5 = 0,0072 Р 0; Р 6 = 0,0007 Р 0. Так как сумма вероятнос­тей нахождения системы в любом из состояний равна 1, т.е.

=1,

то P 0(1 + 0,6 + 0,3 + 0,12 + 0,036 + 0,0072 + 0,0007) = 2,0639; Р 0 = 1.

Отсюда находим Р 0 = 0,4845.

Дальнейшие расчеты затруднений не вызывают. Напри­мер, средняя длина очереди равна

А 1 =(2 - 1) Р 2 + (3 - 1) Р 3 + (4 - 1) Р 4 + (5 - 1) Р 5 + (6 - 1) Р 6; А = 0,3296.





Поделиться с друзьями:


Дата добавления: 2016-10-06; Мы поможем в написании ваших работ!; просмотров: 2300 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Ваше время ограничено, не тратьте его, живя чужой жизнью © Стив Джобс
==> читать все изречения...

2196 - | 2141 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.