Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Задачи к контрольным заданиям




Статика

Задача С1

Конструкция состоит из жесткого угольника и стержня, которые в точке или соединены друг с другом шарнирно (рис. С1.0–С1.5), или свободно опираются друг о друга (рис. С1.6–С1.9).

 

Рис. С1.0 Рис. С1.1

Рис. С1.2 Рис. С1.3

 

Рис. С1.4 Рис. С1.5

Рис. С1.6 Рис. С1.7

Рис. С1.8 Рис. С1.9

 

Внешними связями, наложенными на конструкцию, являются в точке или шарнир, или жесткая заделка; в точке или гладкая плоскость (рис. С1.0 и С1.1), или невесомый стержень (рис. С1.2 и С1.3), или шарнир (рис. С1.4– С1.9); в точке или невесомый стержень (рис. С1.0, С1.3, С1.8), или шарнирная опора на катках (рис. С1.7).

На каждую конструкцию действуют: пара сил с моментом , равномерно распределенная нагрузка интенсивности и еще две силы. Эти силы, их направления и точки приложения указаны в табл. С1; там же в столбце «Нагруженный участок» указано, на каком участке действует распределенная нагрузка (например, в условиях № 1 на конструкцию действуют сила под углом 60° к горизонтальной оси, приложенная в точке , сила под углом 30° к горизонтальной оси, приложенная в точке , и нагрузка, распределенная на участке ).

Определить реакции связей в точках , , (для рис. С1.0, С1.3, С1.7, С1.8 еще и в точке ), вызванные заданными нагрузками. При окончательных расчетах принять м. Направление распределенной нагрузки на различных по расположению участках указано в табл. С1а.

Таблица С1

Сила         Нагруженный участок
кН кН кН кН
№ условия Точка приложения α, град Точка приложения α, град Точка приложения α, град Точка приложения α, град
  K   H   CL
  L   E   CK
  L   K   AE
  K   H   CL
  L   E   CK
  L   K   AE
  E   K   CL
  H   L   CK
  K   E   CL
  H   L   CK

 

Таблица С1а

Участок на угольнике Участок на стержне
горизонтальный вертикальный рис. С1.0, С1.3, С1.5, С1.7, С1.8 рис. С1.1, С1.2, С1.4, С1.6, С1.9
         

Указания. Задача С1 – на равновесие системы тел, находящихся под действием плоской системы сил. При ее решении можно или рассмотреть сначала равновесие всей системы в целом, а затем равновесие одного из тел системы, изобразив его отдельно, или же сразу расчленить систему и рассмотреть равновесие каждого из тел в отдельности, учтя при этом закон о равенстве действия и противодействия. В задачах, где имеется жесткая заделка, учесть, что ее реакция представляется силой, модуль и направление которой неизвестны, и парой сил, момент которой тоже неизвестен.

Пример С1.

На угольник (), конец которого жестко заделан, в точке опирается стержень (рис. С1,а). Стержень имеет в точке неподвижную шарнирную опору и к нему приложена сила , а к угольнику – равномерно распределенная на участке нагрузка интенсивности и пара с моментом .

Дано: кН, , , м.

Определить: реакции в точках , , .

Решение:

1. Для определения реакций расчленим систему и рассмотрим сначала равновесие стержня (рис. С1,б). Проведем координатные оси и изобразим действующие на стержень силы: силу , реакцию , направленную перпендикулярно стержню, и составляющие и реакции шарнира . Для полученной плоской системы сил составляем три уравнения равновесия:

(1)

(2)

(3)

Рис. С1

 

2. Теперь рассмотрим равновесие угольника (рис. С1,в). На него действуют сила давления стержня , направленная противоположно реакции , равномерно распределенная нагрузка, которую заменяем силой , приложенной в середине участка (численно кН), пара сил с моментом и реакция жесткой заделки, слагающаяся из силы, которую представим составляющими и , и пары с моментом . Для этой плоской системы сил тоже составляем три уравнения равновесия:

(4)

(5)

. (6)

При вычислении момента силы разлагаем ее на составляющие и и применяем теорему Вариньона. Подставив в составленные уравнения числовые значения заданных величин и решив систему уравнений (1)–(6), найдем искомые реакции. При решении учитываем, что в силу равенства действия и противодействия.

Ответ: кН, кН, кН, кН, кН, . Знаки минус указывают, что силы , и момент направлены противоположно показанным на рисунках.

Кинематика

Задача К1

Под номером К1 помещены две задачи К1а и К1б, которые надо решить.

Задача К1а. Точка движется в плоскости (рис. К1.0–К1.9, табл. К1; траектория точки на рисунках показана условно). Закон движения точки задан уравнениями: , , где и выражены в сантиметрах, – в секундах.

Найти уравнение траектории точки; для момента времени с определить скорость и ускорение точки, а также ее касательное и нормальное ускорения и радиус кривизны в соответствующей точке траектории.

 

Рис. К1.0 Рис. К1.1 Рис. К1.2

 

Рис. К1.3 Рис. К1.4 Рис. К1.5

 

Рис. К1.6 Рис. К1.7 Рис. К1.8

Рис. К1.9
Зависимость указана непосредственно на рисунках, а зависимость дана в табл. К1 (для рис. К1.0– К1.2 в столбце 2, для рис. К1.3– К1.6 в столбце 3, для рис. К1.7– К1.9 в столбце 4).

Задача К1б. Точка движется по дуге окружности радиуса м по закону , заданному в табл. К1 в столбце 5 ( – в метрах, – в секундах), где — расстояние точки от некоторого начала , измеренное вдоль дуги окружности. Определить скорость и ускорение точки в момент времени с. Изобразить на рисунке векторы и , считая, что точка в этот момент находится в положении , а положительное направление отсчета – от к .

Таблица К1

Номер условия
Рис. 0–2 Рис. 3–6 Рис. 7–9
  12 4 4
  –6 8 6 2
  –3 4
  9 10 –2
  3 2 –4 4
  10 12 –3
  6 2 –3
  –2 –8 –2
  9 9 3
  –8 4 –6 –2

Указания. Задача К1 относится к кинематике точки и решается с помощью формул, по которым определяются скорость и ускорение точки в декартовых координатах (координатный способ задания движения точки), а также формул, по которым определяются скорость, касательное и нормальное ускорения точки при естественном способе задания ее движения.

В задаче все искомые величины нужно определить только для момента времени с. В некоторых вариантах задачи К1а при определении траектории или при последующих расчетах (для их упрощения) следует учесть известные тригонометрические соотношения.

Пример К1а.

Даны уравнения движения точки в плоскости :

,

(, – в сантиметрах, – в секундах).

Определить уравнение траектории точки; для момента времени с найти скорость и ускорение точки, а также ее касательное и нормальное ускорения и радиус кривизны в соответствующей точке траектории.

Решение:

1. Для определения уравнения траектории точки исключим из заданных уравнений движения время . Поскольку входит в аргументы тригонометрических функций, где один аргумент вдвое больше другого, используем формулу

:

. (1)

Из уравнений движения находим выражения соответствующих функций и подставляем в равенство (1). Получим

, ,

следовательно,

.

Отсюда окончательно находим следующее уравнение траектории точки (параболы, рис. К1,а):

. (2)

Рис. К1,а
2. Скорость точки найдем по ее проекциям на координатные оси:

, ,

.

Для момента времени с: , , .

3. Аналогично найдем ускорение точки:

, ,

.

Для момента времени с: , , . (4)

4. Касательное ускорение найдем, дифференцируя по времени равенство:

Получим

,

откуда

. (5)

Числовые значения всех величин, входящих в правую часть выражения (5), определены и даются равенствами (3) и,(4). Подставив в (5) эти числа, найдем сразу, что при с: .

5. Нормальное ускорение точки . Подставляя сюда найденные при с числовые значения и , получим, что .

6. Радиус кривизны траектории . Подставляя сюда числовые значения и при с, найдем, что см.

Ответ: , , , , см.

Пример К1б.

Точка движется по дуге окружности радиуса м по закону , ( – в метрах, – в секундах), где (рис. К1,б).

Определить скорость и ускорение точки в момент времени с.

Решение:

Определяем скорость точки:

.

При с получим .

Ускорение находим по его касательной и нормальной составляющим:

,

,

.

Рис. К1,б
При с получим , , .

Изобразим на рис. К1,б векторы и , учитывая знаки и считая положительным направление от к .

Ответ: , .

Задача К2

Плоский механизм состоит из стержней 1–4 и ползуна , соединенных друг с другом и с неподвижными опорами и шарнирами. Точка находится в середине стержня . Длины стержней равны соответственно м, м, м, м. Положение механизма определяется углами . Значения этих углов и других заданных величин указаны в табл. К2. Точка на всех рисунках и точка на рис. К2.7 – К2.9 в середине соответствующего стержня. Угловое ускорение стержня 1 с-1.

Дуговые стрелки на рисунках показывают, как при построении чертежа механизма должны откладываться соответствующие углы: по ходу или против хода часовой стрелки (например, угол на рис. К2.8 отложить от против хода часовой стрелки, а на рис. К2.9 – по ходу часовой стрелки и т.д.).

 

Рис. К2.0 Рис. К2.1

 

Рис. К2.2 Рис. К2.3

 

Рис. К2.4 Рис. К2.5

 

Рис. К2.6 Рис. К2.7

 

Рис. К2.8 Рис. К2.9

 

Определить ускорение точки звена 1 и величины, указанные в таблице в столбце «Найти».

Построение чертежа начинать со стержня, направление которого определяется углом ; ползун с направляющими для большей наглядности изобразить так, как в примере К2 (см. рис. К2б).

Заданные угловую скорость и угловое ускорение считать направленными против часовой стрелки, а заданную скорость – от точки к (на рис. К2.5– К2.9).

Указания. Задача К2 – на исследование плоскопараллельного движения твердого тела. При ее решении для определения скоростей точек механизма и угловых скоростей его звеньев следует воспользоваться теоремой о проекциях скоростей двух точек тела и понятием о мгновенном центре скоростей, применяя эту теорему (или это понятие) к каждому звену механизма в отдельности.

Таблица К2

№ условия Углы, град Дано Найти
ω1, 1/с ω4, 1/с vВ, м/с ω звена v точки
                B, E
                A,D
                A, E
                D, E
                A, B
                A, E
                B, E
                A, D
                A, E
                B,E

Пример К2.

Механизм (рис. К2,а) состоит из стержней 1, 2, 3, 4 и ползуна , соединенных друг с другом и с неподвижными опорами и шарнирами.

Рис. К2,а
Дано: , , , , , , м, м, м, с-1, с-2 (направления и – против хода часовой стрелки).

Определить: , , , .

Решение:

1. Строим положение механизма в соответствии с заданными углами и выбранным масштабом длин (рис. К2,б; на этом рисунке изображаем все векторы скоростей).

2. Определяем . Точка принадлежит стержню . Чтобы найти , надо знать скорость какой-нибудь другой точки этого стержня и направление . По данным задачи, учитывая направление , можем определить . Численно:

м/с,

. (1)

Рис. К2,б
Направление найдем, учтя, что точка принадлежит одновременно ползуну, движущемуся вдоль направляющих поступательно. Теперь, зная и направление , воспользуемся теоремой о проекциях скоростей двух точек тела (стержня ) на прямую, соединяющую эти точки (прямая ). Сначала по этой теореме устанавливаем, в какую сторону направлен вектор (проекции скоростей должны иметь одинаковые знаки). Затем, вычисляя эти проекции, находим

, м/с. (2)

3. Определяем . Точка принадлежит стержню . Следовательно, по аналогии с предыдущим, чтобы определить , надо сначала найти скорость точки , принадлежащей одновременно стержню . Для этого, зная и , строим мгновенный центр скоростей (МЦС) стержня . Это точка , лежащая на пересечении перпендикуляров к и , восставленных из точек и перпендикулярен стержень 1). По направлению вектора определяем направление поворота стержня вокруг МЦС . Вектор перпендикулярен отрезку , соединяющему точки и , и направлен в сторону поворота. Величину найдем из пропорции:

. (3)

Чтобы вычислить и , заметим, что – прямоугольный, так как острые углы в нем равны 30° и 60°, и что . Тогда является равносторонним и . В результате равенство (3) дает

м/с, . (4)

Так как точка принадлежит одновременно стержню , вращающемуся вокруг , то . Тогда, восставляя из точек и перпендикуляры к скоростям и , построим МЦС стержня . По направлению вектора определяем направление поворота стержня вокруг центра . Вектор направлен в сторону поворота этого стержня. Из рис. К2,б видно, что , откуда . Составив теперь пропорцию, найдем, что

, м/с. (5)

4. Определяем . Так как МЦС стержня 2 известен (точка ) и м, то

с–1. (6)

5. Определяем (рис. К2,в, на котором изображаем все векторы ускорений). Точка принадлежит стержню 1. Полное ускорение точки разложим на тангенциальную и нормальную составляющие:

,

где численно

м/с2,

м/с2. (7)

Рис. К2,в
Вектор направлен вдоль , а – перпендикулярно . Изображаем эти векторы на чертеже (см. рис. К2в). Вычисляем

м/с2.

Ответ: м/с, м/с, с–1, м/с2.


КОНТРОЛЬНЫЕ ВОПРОСЫ

Задача С1

1) Основные виды силовых воздействий и их свойства:

– сосредоточенная сила (проекции силы на оси; момент силы относительно точки как характеристика вращательного действия силы; величина и знак алгебраического момента;

– вращающий момент (пара сил), изображение пары на плоскости, момент пары;

– распределенные силы с постоянной интенсивностью (эпюра распределенных сил, приведение к равнодействующей).

2) Силы активные и реакции связей. Внешние закрепления конструкции (подвижный и неподвижный цилиндрические шарниры, скользящая заделка – втулка, жесткая заделка, невесомый стержень, нить, идеальная поверхность). Как направлены реакции этих связей? Сколько неизвестных составляющих реакции имеет каждая из перечисленных связей? В каком случае реакция связи содержит вращающий момент?

3) Виды представленных в конструкциях соединений тел между собой. Метод разбиения. Внутренние двусторонние и односторонние связи.

4) Каковы аналитические условия равновесия произвольной плоской системы сил?

5) Статическая определимость и неопределимость конструкции. Какие дополнительные условия представлены в задаче, которые делают конструкцию статически определимой? Как определяется статическая определимость в сочлененных конструкциях?

Задача К1

1) Координатный способ задания движения точки.

2) Определение скорости точки. Нахождение скорости при координатном способе задания движения.

3) Определение ускорения. Разложение ускорения на касательную и нормальную составляющие.

4) Естественный способ изучения движения. Определение кинематических характеристик в естественных координатах.

Задача К2

1) Виды движений различных звеньев плоского механизма задачи К2.

2) Поступательное движение.

3) Вращательное движение вокруг неподвижной оси (центра ). Угловая скорость и угловое ускорение вращающихся звеньев. Как направлены и чему равны скорости точек вращающегося тела?

4) Плоскопараллельное движение. Мгновенный центр скоростей и его свойства. Как найдены МЦС звеньев механизма задачи?

5) Как формулируется теорема о проекциях скоростей двух точек тела? Как она используется для нахождения скоростей различных точек механизма?


Библиографический список

1. Никитин Н.Н. Курс теоретической механики: учебник для машиностроит. и приборостроит. спец. вузов / Н.Н. Никитин. – М.: Высш. шк., 1990. 607 с.

2. Бутенин Н.В. Курс теоретической механики: в 2х т. / Н.В. Бутенин, Я.Л. Лунц, Д.Р. Меркин. – СПб.: Лань, 2002. 736 с.

3. Тарг С.М. Краткий курс теоретической механики / С.М. Тарг. – М: Высш. шк., 2008. 416 с.

4. Цывильский В.Л. Теоретическая механика / В.Л. Цывильский. – М: Высш. шк., 2008. 368 с.

5. Переславцева Н.С. Теоретическая механика: учеб. пособие / Н.С. Переславцева, Н.П. Бестужева. – Воронеж: ВГТУ, 2009. – 157 с.

6. Мещерский И.В. Задачи по теоретической механике / И.В. Мещерский. – СПб.: Лань, 2001. 448 с.

7. Сборник заданий для курсовых работ по теоретической механике: учеб. пособие для техн. вузов / под ред. А.А. Яблонского. – М.: Интеграл-Пресс, 2006. 384 с.


содержание

 

Программа курса....................... 1

Статика........................... 2

Кинематика......................... 3

Кинематика твердого тела................. 4

Содержание контрольных заданий, выбор вариантов,

порядок выполнения работ, общие

пояснения к тексту задач................. 5

Принятые обозначения.................... 7

Задачи к контрольным заданиям.............. 10

Статика. Задача С1.................... 10

Кинематика. Задача К1.................. 16

Задача К2.................. 22

Контрольные вопросы.................... 29

Библиографический список................. 31

 


Программа, методические указания

и контрольное задание № 1

(статика, кинематика)

по дисциплине

«Теоретическая механика»

для бакалавров всех направлений

заочной и заочной ускоренной форм обучения

 

 

Составители:

Переславцева Наталья Сергеевна

Бестужева Наталья Петровна

 

 

В авторской редакции

 

Компьютерный набор Н.С. Переславцевой

 

 

Подписано к изданию 30.10.2012.

Уч.-изд. л. 1,9.

 

ФГБОУ ВПО

«Воронежский государственный технический университет»

394026 Воронеж, Московский просп., 14





Поделиться с друзьями:


Дата добавления: 2016-10-06; Мы поможем в написании ваших работ!; просмотров: 651 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если вы думаете, что на что-то способны, вы правы; если думаете, что у вас ничего не получится - вы тоже правы. © Генри Форд
==> читать все изречения...

2692 - | 2599 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.