Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Пропускная способность канала связи




В любой системе связи через канал передаётся информация. Её скорость определяется по формуле:

I’(А,В)=H’(А)-H’(А|В)=H’(А)-H’(В|А). (1)

Величина H (A | B) - это потери информации при передаче ее по каналу. Ее также называют ненадежностью канала. H (B | A) - энтропияшума; показывает, сколько бит шумовой информации примешивается к сигналу. Передачу сигнала по каналу иллюстрирует рис. 1.

 

Рис. 1. Передача информации по каналу с помехами

 

Здесь I ’(A, B)= v * I (A, B) - скорость передачи информации по каналу.

Как видно из формулы (1), эта скорость зависит не только от самого канала, но и от свойств подаваемого на его вход сигнала и поэтому не может характеризовать канал как средство передачи информации.

Рассмотрим дискретный канал, через который передаются в единицу времени u символов из алфавита объёмом m. При передачи каждого символа в среднем по каналу проходит количество информации

 

I (A,B)=H(A)-H(A|B)=H(B)-H(B|A), (2)

 

где А и В- случайные символы на входе и выходе канала. Из четырёх фигурирующих здесь энтропий Н(А)- собственная информация передаваемого символа определяется источником дискретного сигнала и не зависит от свойств канала. Остальные три энтропии в общем случае зависят как от источника сигнала, так и от канала.

Величина I (A, B) характеризует не только свойства канала, но и свойства источника информации. Пусть на вход канала можно подавать сигналы от различных источников информации с различными распределениями P (A). Для каждого источника I (A, B) примет свое значение. Максимальноеколичествоинформации, взятое по всевозможным Р (А), характеризует только канал и называется пропускнойспособностью (ПС) канала в расчете на один символ:

бит/символ,

где максимизация производится по всем многомерным распределениям вероятностей Р(А).

Также определяют пропускную способность С канала в расчете на единицу времени:

бит/с, (3)

где v - количество символов, переданное в секунду.

В качестве примера вычислим пропускную способность дискретного симметричного канала без памяти (рис. 2) с вероятностью ошибочного перехода - p.

Рис. 2. Модель двоичного симметричного канала без памяти

 

Согласно свойству взаимной информации 2 можно записать: С сим=max(H (B)- H (B | A)). Распишем H (B | A). Исходя из условий задачи вероятность правильной передачи символа по каналу - 1-p, а вероятность ошибочной передачи одного символа p /(1- m), где m - число различных символов, передающихся по каналу. Общее количество верных передач - m; общее количество ошибочных переходов - m *(m -1). Отсюда следует, что:

.

Следовательно, Н(В/А) не зависит от распределения вероятности в ансамбле А, а определяется только переходными вероятностями канала. Это свойство сохраняется для всех моделей канала с аддитивным шумом.

Максимальное значение Н (В)=log m. Отсюда следует:

. (4)

Пропускная способность в двоичных единицах в расчете на единицу времени:

. (5)

Для двоичного симметричного канала (m=2) пропускная способность в двоичных единицах в единицу времени

С=u[1+p*log(p)+(1-p)*log(1-p)] (6)

Зависимость С/u от р согласно (6) показана на рис.3

рис.3 Зависимость пропускной способности двоичного симметричного канала без памяти от вероятности ошибочного приёма символа.

 

При р=1/2 пропускная способность канала С=0, поскольку при такой вероятности ошибки последовательность выходных символов можно получить совсем не передавая сигнала по каналу, а выбирая их наугад, т.е. при р=1/2 последовательности на выходе и входе канала независимы. Случай С=0 называют обрывом канала.

 





Поделиться с друзьями:


Дата добавления: 2016-09-06; Мы поможем в написании ваших работ!; просмотров: 750 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Слабые люди всю жизнь стараются быть не хуже других. Сильным во что бы то ни стало нужно стать лучше всех. © Борис Акунин
==> читать все изречения...

2240 - | 2159 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.