Функционально, программное обеспечение делится на следующие категории:
Системное программное обеспечение
Прикладное программное обеспечение
Инструментальное программное обеспечение
[редактировать]
Системное программное обеспечение
операционная система;
файловый менеджер;
архиватор;
перекодировщик;
антивирус;
другие...
[редактировать]
Прикладное программное обеспечение
Можно выделить множество групп прикладного ПО:
Офисное ПО: текстовый процессор, электронная таблица;
ПО для работы в сети и обмена информацией: браузер, почтовая программа, программа для обмена мгновенные сообщениями (чат и т. д.);
ПО для работы с графикой, звуком;
ПО для проектирования (система автоматизации проектных работ);
компьютерые игры;
демо;
другие...
Платформы
Любая единица программного обеспечения требует для работы определённого окружения — наличия определённых программных и аппаратных средств, с которыми ПО будет взаимодействовать. Одним из важнейших компонентов окружения является так называемая платформа: это некий стандарт на программное и/или аппаратное обеспечение, на котором программа будет работать.
Программные платформы это — операционные системы, firmware. Аппаратные платформы — стандарты на тип микропроцессора и других средств.
[редактировать]
Распространение программного обеспечения, правовой аспект
Свободное программное обеспечение
Проприетарное программное обеспечение
Программное обеспечение с открытым кодом
Условно-бесплатное программное обеспечение
Интерне́т
(англ. Internet, МФА: [ˈɪn.tə.net][1]) — всемирная система объединённых компьютерных сетей, построенная на базе IP и маршрутизации IP-пакетов. Интернет образует глобальное информационное пространство, служит физической основой для Всемирной паутины (World Wide Web, WWW) и множества других систем (протоколов) передачи данных. Часто упоминается как Всемирная сеть и Глобальная сеть, а также просто Сеть[2], в обиходе иногда употребляют сокращённые наименования ине́т, нет.
В настоящее время под словом «Интернет» чаще всего имеется в виду Всемирная паутина и доступная в ней информация, а не физическая сеть.
К середине 2008 года число пользователей, регулярно использующих Интернет, составило около 1,5 млрд человек (около четверти населения Земли).[3] Вместе с подключёнными к нему компьютерами, Интернет служит основой для развития информационного общества.
История
В 1957 году Министерство обороны США посчитало, что на случай войны Америке нужна надёжная система передачи информации. Агентство по перспективным оборонным научно-исследовательским разработкам США (DARPA) предложило разработать для этого компьютерную сеть. Разработка такой сети была поручена Калифорнийскому университету в Лос-Анджелесе, Стэнфордскому исследовательскому центру, Университету Юты и Университету штата Калифорния в Санта-Барбаре. Компьютерная сеть была названа ARPANET (англ. Advanced Research Projects Agency Network), и в 1969 году в рамках проекта сеть объединила четыре указанных научных учреждения. Все работы финансировались Министерством обороны США. Затем сеть ARPANET начала активно расти и развиваться, её начали использовать учёные из разных областей науки.
Первый сервер ARPANET был установлен 2 сентября 1969 года в Калифорнийском университете (Лос-Анджелес). Компьютер Honeywell DP-516 имел 24 Кб оперативной памяти[8].
29 октября 1969 года в 21:00 между двумя первыми узлами сети ARPANET, находящимися на расстоянии в 640 км — в Калифорнийском университете Лос-Анджелеса (UCLA) и в Стэнфордском исследовательском институте (SRI) — провели сеанс связи. Чарли Клайн (Charley Kline) пытался выполнить удалённое подключение из Лос-Анджелеса к компьютеру в Стэнфорде. Успешную передачу каждого введённого символа его коллега Билл Дювалль (Bill Duvall) из Стэнфорда подтверждал по телефону.
В первый раз удалось отправить всего три символа «LOG», после чего сеть перестала функционировать. LOG должно было быть словом LOGIN(команда входа в систему). В рабочее состояние систему вернули уже к 22:30 и следующая попытка оказалась успешной. Именно эту дату можно считать днём рождения Интернета.[9]
К 1971 году была разработана первая программа для отправки электронной почты по сети. Эта программа сразу стала очень популярна.
В 1973 году к сети были подключены через трансатлантический телефонный кабель первые иностранные организации из Великобритании и Норвегии, сеть стала международной.
В 1970-х годах сеть в основном использовалась для пересылки электронной почты, тогда же появились первые списки почтовой рассылки, новостные группы и доски объявлений. Однако в то время сеть ещё не могла легко взаимодействовать с другими сетями, построенными на других технических стандартах. К концу 1970-х годов начали бурно развиваться протоколы передачи данных, которые были стандартизированы в 1982—1983 годах. Активную роль в разработке и стандартизации сетевых протоколов играл Джон Постел. 1 января 1983 года сеть ARPANET перешла с протокола NCP на TCP/IP, который успешно применяется до сих пор для объединения (или, как ещё говорят, «наслоения») сетей. Именно в 1983 году термин «Интернет» закрепился за сетью ARPANET.
В 1984 году была разработана система доменных имён (англ. Domain Name System, DNS).
В 1984 году у сети ARPANET появился серьёзный соперник: Национальный научный фонд США (NSF) основал обширную межуниверситетскую сеть NSFNet (англ. National Science Foundation Network), которая была составлена из более мелких сетей (включая известные тогда сети Usenet и Bitnet) и имела гораздо бо́льшую пропускную способность, чем ARPANET. К этой сети за год подключились около 10 тыс. компьютеров, название «Интернет» начало плавно переходить к NSFNet.
В 1988 году был разработан протокол Internet Relay Chat (IRC), благодаря чему в Интернете стало возможно общение в реальном времени (чат).
В 1989 году в Европе, в стенах Европейского совета по ядерным исследованиям (ЦЕРН) родилась концепция Всемирной паутины. Её предложил знаменитый британский учёный Тим Бернерс-Ли, он же в течение двух лет разработал протокол HTTP, язык HTML и идентификаторы URI.
Соавтор Тима Бернерса-Ли по формулировке целей и задач проекта World Wide Web в ЦЕРН, бельгийский исследователь Роберт Кайо, разъяснял позднее его понимание истоков этого проекта:
История всех великих изобретений, как это давно и хорошо известно, базируется на большом числе им предшествующих. В случае Всемирной паутины (WWW) следовало бы в этом контексте, видимо, отметить по крайней мере два важнейших для успеха проекта пути развития и накопления знаний и технологий: 1) история развития систем типа гипертекста …; 2) Интернет-протокол, который собственно и сделал всемирную сеть компьютеров наблюдаемой реальностью.
— Из речи на открытии Европейского отделения W3 Консорциума. Париж. Ноябрь 1995.[10]
В 1990 году сеть ARPANET прекратила своё существование, полностью проиграв конкуренцию NSFNet. В том же году было зафиксировано первое подключение к Интернету по телефонной линии (т. н. «дозво́н», англ. dialup access).
В 1991 году Всемирная паутина стала общедоступна в Интернете, а в 1993 году появился знаменитый веб-браузер NCSA Mosaic. Всемирная паутина набирала популярность.
Можно считать, что существует две ясно различимые эры в истории Web: [до браузера Mosaic] Марка Андриссена и после.
Именно сочетание веб-протокола от Тима Бернерс-Ли, который обеспечивал коммуникацию, и браузера (Mosaic) от Марка Андриссена, который предоставил функционально совершенный пользовательский интерфейс, создало условия для наблюдаемого взрыва (интереса к Веб). За первые 24 месяца, истекшие после появления браузера Моsaic, Web прошел стадию от полной неизвестности (за пределами считанного числа людей внутри узкой группы ученых и специалистов лишь одного мало кому известного профиля деятельности) до полной и абсолютно везде в мире его распространенности.
— A Brief History of Cyberspace, Mark Pesce, ZDNet, 15 октября 1995[11]
В 1995 году NSFNet вернулась к роли исследовательской сети, маршрутизацией всего трафика Интернета теперь занимались сетевые провайдеры, а не суперкомпьютеры Национального научного фонда.
В том же 1995 году Всемирная паутина стала основным поставщиком информации в Интернете, обогнав по трафику протокол пересылки файлов FTP. Был образован Консорциум Всемирной паутины (W3C). Можно сказать, что Всемирная паутина преобразила Интернет и создала его современный облик. С 1996 года Всемирная паутина почти полностью подменяет собой понятие «Интернет».
В 1990-е годы Интернет объединил в себе большинство существовавших тогда сетей (хотя некоторые, как Фидонет, остались обособленными). Объединение выглядело привлекательным благодаря отсутствию единого руководства, а также благодаря открытости технических стандартов Интернета, что делало сети независимыми от бизнеса и конкретных компаний. К 1997 году в Интернете насчитывалось уже около 10 млн компьютеров, было зарегистрировано более 1 млн доменных имён. Интернет стал очень популярным средством для обмена информацией.
В настоящее время подключиться к Интернету можно через спутники связи, радио-каналы, кабельное телевидение, телефон, сотовую связь, специальные оптико-волоконные линии или электропровода. Всемирная сеть стала неотъемлемой частью жизни в развитых и развивающихся странах.
В течение пяти лет Интернет достиг аудитории свыше 50 миллионов пользователей. Другим средствам коммуникации требовалось гораздо больше времени для достижения такой популярности.
Ключевые принципы
Интернет состоит из многих тысяч корпоративных, научных, правительственных и домашних компьютерных сетей. Объединение сетей разной архитектуры и топологии стало возможно благодаря протоколу IP (англ. Internet Protocol) и принципу маршрутизации пакетов данных.
Протокол IP был специально создан агностическим в отношении физических каналов связи. То есть любая система (сеть) передачи цифровых данных, проводная или беспроводная, для которой существует стандарт инкапсуляции в неё IP-пакетов, может передавать и трафик Интернета. Агностицизм протокола IP, в частности, означает, что компьютер или маршрутизатор должен знать тип сетей, к которым он непосредственно присоединён, и уметь работать с этими сетями; но не обязан (и в большинстве случаев не может) знать, какие сети находятся за маршрутизаторами.
На стыках сетей специальные маршрутизаторы (программные или аппаратные) занимаются автоматической сортировкой и перенаправлением пакетов данных, исходя из IP-адресов получателей этих пакетов. Протокол IP образует единое адресное пространство в масштабах всего мира, но в каждой отдельной сети может существовать и собственное адресное подпространство, которое выбирается исходя из класса сети. Такая организация IP-адресов позволяет маршрутизаторам однозначно определять дальнейшее направление для каждого пакета данных. В результате между отдельными сетями Интернета не возникает конфликтов, и данные беспрепятственно и точно передаются из сети в сеть по всей планете и ближнему космосу.
Сам протокол IP был рождён в дискуссиях внутри организации IETF (англ. Internet Engineering Task Force; Task force — группа специалистов для решения конкретной задачи), чьё название можно вольно перевести как «Группа по решению задач проектирования Интернета». IETF и её рабочие группы по сей день занимаются развитием протоколов Всемирной сети. IETF открыта для публичного участия и обсуждения. Комитеты организации публикуют так называемые документы RFC. В этих документах даются технические спецификации и точные объяснения по многим вопросам. Некоторые документы RFC возводятся организацией IAB (англ. Internet Architecture Board — Совет по архитектуре Интернета) в статус стандартов Интернета (англ. Internet Standard). С 1992 года IETF, IAB и ряд других интернет-организаций входят в Общество Интернета (англ. Internet Society, ISOC). Общество Интернета предоставляет организационную основу для разных исследовательских и консультативных групп, занимающихся развитием Интернета.
Протоколы
Протокол, в данном случае, — это, образно говоря, «язык», используемый компьютерами для обмена данными при работе в сети. Чтобы различные компьютеры сети могли взаимодействовать, они должны «разговаривать» на одном «языке», то есть использовать один и тот же протокол. Проще говоря, протокол — это правила передачи данных между узлами компьютерной сети. Систему протоколов Интернет называют «стеком протоколов TCP/IP».
Структура (сервисы и услуги)
В настоящее время в Интернете существует достаточно большое количество сервисов, обеспечивающих работу со всем спектром ресурсов. Наиболее известными среди них являются:
сервис DNS, или система доменных имен, обеспечивающий возможность использования для адресации узлов сети мнемонических имен вместо числовых адресов;
электронная почта (E-mail), обеспечивающая возможность обмена сообщениями одного человека с одним или несколькими абонентами;
сервис IRC, предназначенный для поддержки текстового общения в реальном времени (chat);
телеконференции, или группы новостей (Usenet), обеспечивающие возможность коллективного обмена сообщениями;
сервис FTP — система файловых архивов, обеспечивающая хранение и пересылку файлов различных типов;
сервис Telnet, предназначенный для управления удаленными компьютерами в терминальном режиме;
World Wide Web (WWW, W3, «Всемирная паутина») — гипертекстовая (гипермедиа) система, предназначенная для интеграции различных сетевых ресурсов в единое информационное пространство;
Потоковое мультимедиа.
Перечисленные выше сервисы относятся к стандартным. Это означает, что принципы построения клиентского и серверного программного обеспечения, а также протоколы взаимодействия сформулированы в виде международных стандартов. Следовательно, разработчики программного обеспечения при практической реализации обязаны выдерживать общие технические требования.
Наряду со стандартными сервисами существуют и нестандартные, представляющие собой оригинальную разработку той или иной компании. В качестве примера можно привести различные системы типа Instant Messenger (своеобразные интернет-пейджеры — ICQ, AOl, Demos on-line и т. п.), системы интернет-телефонии, трансляции радио и видео и т. д. Важной особенностью таких систем является отсутствие международных стандартов, что может привести к возникновению технических конфликтов с другими подобными сервисами.
Браузеры
Основная статья: Браузер
Браузер — компьютерная программа для просмотра веб-страниц.
Существует довольно много браузеров. Самые популярные из них — это Google Chrome, Opera, Mozilla Firefox, Internet Explorer и Safari.
Сетевые сервисы
[править]
Материал из Википедии — свободной энциклопедии
Перейти к: навигация, поиск
Взаимодействие компьютеров между собой, а также с другим активным сетевым оборудованием, в TCP/IP-сетях организовано на основе использования сетевых служб, которые обеспечиваются специальными процессами сетевой операционной системы (ОС) — демонами в UNIX-подобных ОС, службами в ОС семейства Windows и т. п.
Сокеты, соединения
Имеется викиучебник по теме
«TCP/IP»
Специальные процессы операционной системы (демоны, службы) создают «слушающий» сокет и «привязывают» его к определённому порту (пассивное открытие соединения), обеспечивая тем самым возможность другим компьютерам обратиться к данной службе. Клиентская программа или процесс создаёт запрос на открытие сокета с указанием IP-адреса и порта сервера, в результате чего устанавливается соединение, позволяющее взаимодействовать двум компьютерам с использованием соответствующего сетевого протокола прикладного уровня.
Номера портов
Номер порта для «привязки» службы выбирается в зависимости от его функционального назначения. За присвоение номеров портов определённым сетевым службам отвечает IANA. Номера портов находятся в диапазоне 0 — 65535 и разделены на 3 категории[1]:
Список соответствия между сетевыми службами и номерами портов
Официальный список соответствия между сетевыми службами и номерами портов ведёт IANA.
[править]
История регулирования соответствия
См. также: Управление интернетом
Вопросы унификации соответствия сетевых служб номерам сокетов (портов) поднимались в RFC 322 и 349, первые попытки регулирования были предприняты Джоном Постелом в RFC 433 и 503.
До января 2002 года соответствие регулировалось серией документов IETF «Assigned Numbers» (RFCs 739, 750, 755, 758, 762, 770, 776, 790, 820, 870, 900, 923, 943, 960, 990, 1010, 1060, 1340, 1700), значительную часть которых готовил Джон Постел.
Начиная с RFC 1060 (англ.) функция регулирования соответствия сетевых служб номерам портов была передана специальной организации IANA. С момента принятия в январе 2002 года RFC 3232 (англ.) предусматривается ведение онлайновой базы данных такого соответствия, без закрепления его в RFC (см.: DCCP).
[править]
Актуальный список
Актуальная версия списка (англ.) размещена на сайте IANA (англ.).
См. также: Список портов TCP и UDP
[править]
Локальная копия списка
Локальная копия списка входит в установочный пакет сетевых операционных систем. Файл локальной копии списка обычно называется services и в различных операционных системах «лежит» в разных местах:
Windows 98/ME
C:\Windows\services
Windows NT/XP
C:\Windows\system32\drivers\etc\services
UNIX-подобные ОС
/etc/services
[править]
Состояние сетевых служб операционной системы
В большинстве операционных систем можно посмотреть состояние сетевых служб при помощи команды (утилиты)
netstat -an
Состояние (State) LISTEN (LISTENING) показывает пассивно открытые соединения («слушающие» сокеты). Именно они и предоставляют сетевые службы. ESTABLISHED — это установленные соединения, то есть сетевые службы в процессе их использования.
Проверка доступности сетевых служб
В случае обнаружения проблем с той или иной сетевой службой, для проверки ее доступности используют различные средства диагностики, в зависимости от их наличия в данной ОС.
Одно из самых удобных средств — команда (утилита) tcptraceroute (разновидность traceroute), которая использует TCP-пакеты открытия соединения (SYN|ACK) с указанным сервисом (по умолчанию — web-сервер, порт 80) интересующего хоста и показывает информацию о времени прохождения данного вида TCP-пакетов через маршрутизаторы, а также информацию о доступности службы на интересующем хосте, либо, в случае проблем с доставкой пакетов — в каком месте пути они возникли.
В качестве альтернативы можно использовать отдельно
traceroute для диагностики маршрута доставки пакетов (недостаток — использование UDP-пакетов для диагностики) и
telnet или netcat на порт проблемной службы для проверки ее отклика.
Мультимедиа
— взаимодействие визуальных и аудиоэффектов под управлением интерактивного программного обеспечения с использованием современных технических и программных средств, они объединяют текст, звук, графику, фото, видео в одном цифровом представлении.
Например, в одном объекте-контейнере (англ. container) может содержаться текстовая, аудиальная, графическая и видео информация, а также, возможно, способ интерактивного взаимодействия с ней.
Термин мультимедиа также, зачастую, используется для обозначения носителей информации, позволяющих хранить значительные объемы данных и обеспечивать достаточно быстрый доступ к ним (первыми носителями такого типа были Компакт-диски). В таком случае термин мультимедиа означает, что компьютер может использовать такие носители и предоставлять информацию пользователю через все возможные виды данных, такие как аудио, видео, анимация, изображение и другие в дополнение к традиционным способам предоставления информации, таким как текст.
Классификация
Мультимедиа может быть грубо классифицировано как линейное и нелинейное.
Аналогом линейного способа представления может являться кино. Человек, просматривающий данный документ никаким образом не может повлиять на его вывод.
Нелинейный способ представления информации позволяет человеку участвовать в выводе информации, взаимодействуя каким-либо образом со средством отображения мультимедийных данных. Участие человека в данном процессе также называется «интерактивностью». Такой способ взаимодействия человека и компьютера наиболее полным образом представлен в категориях компьютерных игр. Нелинейный способ представления мультимедийных данных иногда называется «гипермедиа».
В качестве примера линейного и нелинейного способа представления информации можно рассматривать такую ситуацию, как проведение презентации. Если презентация была записана на пленку и показывается аудитории, то при этом способе донесения информации просматривающие данную презентацию не имеют возможности влиять на докладчика. В случае же живой презентации, аудитория имеет возможность задавать докладчику вопросы и взаимодействовать с ним прочим образом, что позволяет докладчику отходить от темы презентации, например поясняя некоторые термины или более подробно освещая спорные части доклада. Таким образом, живая презентация может быть представлена, как нелинейный(интерактивный) способ подачи информации…
Возможности
Мультимедийные презентации могут быть проведены человеком на сцене, показаны через проектор или же на другом локальном устройстве воспроизведения. Широковещательная трансляция презентации может быть как «живой», так и предварительно записанной. Широковещательная трансляция или запись могут быть основаны на аналоговых или же электронных технологиях хранения и передачи информации. Стоит отметить, что мультимедиа в онлайне может быть либо скачана на компьютер пользователя и воспроизведена каким-либо образом, либо воспроизведена напрямую из интернета при помощи технологий потоковой передачи данных. Мультимедиа, воспроизводимая при помощи технологий потоковой передачи данных может быть как «живая», так и предоставляемая по требованию.
Мультимедийные игры — такие игры, в которых игрок взаимодействует с виртуальной средой, построенной компьютером. Состояние виртуальной среды передается игроку при помощи различных способов передачи информации (аудиальный, визуальный, тактильный). В настоящее время все игры на компьютере или игровой приставке относятся к мультимедийным играм. Стоит отметить, что в такой тип игр можно играть как в одиночку на локальном компьютере или приставке, так и с другими игроками через локальную или глобальную сети.
Различные форматы мультимедиа данных возможно использовать для упрощения восприятия информации потребителем. Например, предоставить информацию не только в текстовом виде, но и проиллюстрировать ее аудиоданными или видеоклипом. Таким же образом современное искусство может представить повседневные, обыденные вещи в новом виде.
Различные формы предоставления информации делают возможным интерактивное взаимодействие потребителя с информацией. Онлайн мультимедиа все в большей степени становится объектно-ориентированной, позволяя потребителю работать над информацией, не обладая специфическими знаниями. Например, для того, чтобы выложить видео на YouTube или Яндекс.Видео, пользователю не требуется знаний по редактированию видео, кодированию и сжатию информации, знаний по устройству web-серверов. Пользователь просто выбирает локальный файл и тысячи других пользователей видеосервиса имеют возможность просмотреть новый видеоролик.
Мультимедийный Интернет-ресурс – Интернет-ресурс, в котором основная информация представлена в виде мультимедиа. Это современный и очень удобный механизм, который не заменяет собой выполнение классических функций, а дополняет и расширяет спектр услуг и новостей для посетителей.
Для мультимедийных Интернет-ресурсов характерно:
Могут содержать различные виды информации(не только текстовую, но и звуковую, графическую, анимационную, видео и т.д.)
Высокая степень наглядности материалов.
Поддержка различных типов файлов: текстовых, графических, аудио и видео.
Возможность использования для продвижения творческих работ в области различных видов искусств.
Ресурс этого типа дает возможность быстро сообщать о событиях, которые организуется, демонстрировать обзорный взгляд на сферу, учреждение или творческий коллектив, налаживать обратную связь со своими посетителями, раскрывать цели и материалы, используя современные механизмы представления информации и способствовать узнаванию представленного объекта посредством сети Интернет.
Использование
Мультимедиа находит своё применение в различных областях, включая, но этим не ограниченными, рекламу, искусство, образование, индустрию развлечений, технику, медицину, математику, бизнес, научные исследования и пространственно-временные приложения (см. Банерджи & Гош, 2010г.). Далее приводится лишь часть примеров.
Образование
В образовании мультимедиа используется для создания компьютерных учебных курсов (популярное название CBTS) и справочников, таких как энциклопедии и сборники. CBT позволяет пользователю пройти через серию презентаций, тематического текста и связанных с ним иллюстраций в различных форматах представления информации. Edutainment – неофициальный термин, используемый, чтобы объединить образование и развлечение, особенно мультимедийные развлечения. Теория обучения за последнее десятилетие была значительно развита в связи с появлением мультимедиа. Выделилось несколько направлений исследований, такие как теория когнитивной нагрузки, мультимедийное обучение и другие. Возможности для обучения и воспитания почти бесконечны. Идея медиа-конвергенции также становится одним из важнейших факторов в сфере образования, особенно в сфере высшего образования. Определяемая как отдельные технологии, такие как голосовые (и функции телефонии), базы данных (и производные приложения), видео-технологии, которые сейчас совместно используют ресурсы и взаимодействуют друг с другом, синергетически создавая новые оперативности, медиа-конвергенция – это стремительно меняющийся учебный курс дисциплин, преподаваемых в университетах по всему миру. Кроме того, она меняет наличие, или отсутствие таковой, работы, требующей этих “подкованных” технологических навыков. Газетные компании также пытаются охватить новый феномен путём внедрения его практик в свою работу. И пока одни медленно приходят в себя, другие крупные газеты, такие как The New York Times, USA Today и The Washington Post создают прецедент для позиционирования газетной индустрии в глобализованном мире.
Техника
Разработчики программного обеспечения могут использовать мультимедиа в компьютерных симуляторах чего угодно: от развлечения до обучения, например: военного или производственного обучения. Мультимедиа для программных интерфейсов часто создаётся как коллаборация между креативными профессионалами и разработчиками программного обеспечения.
Промышленность
В промышленном секторе мультимедиа используют как способ презентации информации для акционеров, руководства и коллег. Мультимедиа также полезно в организации обучения персонала, рекламы и продаж продукта по всему миру посредством фактически неограниченных веб-технологий.
Математические и научные исследования
В математических и научных исследованиях мультимедиа в основном используется для моделирования и симуляции.Например: учёный может взглянуть на молекулярную модель какого-либо вещества и манипулировать ею с тем, чтобы получить другое вещество. Образцовые исследования можно найти в журналах, таких как Journal of Multimedia.
Медицина
Врачи также могут получить подготовку с помощью виртуальных операций или симуляторов человеческого тела, поражённого болезнью, распространённой вирусами и бактериями, таким образом пытаясь разработать методики её предотвращения.
Document Imaging
Document Imaging – техника, которая преобразовывает копию изображения (документа) в цифровой формат[2].
Цифровая картография
Относительно недавно появилась цифровая (компьютерная) картография, занимающаяся компьютерной обработкой картографических данных. Цифровая картография является не столько самостоятельным разделом картографии, сколько её инструментом, обусловленным современным уровнем развития технологии. Например, не отменяя способов пересчёта координат при отображении поверхности Земли на плоскости (изучается таким фундаментальным разделом, как Математическая картография), цифровая картография изменила способы визуализации картографических произведений (изучаются разделом Составление и оформление карт).
Так, если раньше авторский оригинал карты чертился тушью, то на сегодняшний момент он вычерчивается на экране монитора компьютера. Для этого используют Автоматизированные картографические системы (АКС), созданные на базе специального класса программного обеспечения (ПО). Например, GeoMedia, Intergraph MGE, ESRI ArcGIS, EasyTrace, Панорама, Mapinfo и др.
При этом не следует путать АКС и Географические информационные системы (ГИС), т. к. их задачи различны. Однако, на практике один и тот же набор ПО является интегрированным пакетом, используемым для построения и АКС, и ГИС (яркие примеры — ArcGIS, GeoMedia и MGE).
Основная идея пространственного анализа, воплощенного в технике компьютерного картографирования, заключается в акцентировании внимания прежде всего на пространственных координатах того или иного исторического события или процесса, на изучении его пространственной локализации и развития. Так мы подходим собственно к идее карты, но карты не в привычном понимании этого термина как чего-то статичного, а карты как структуры, как системного набора данных с возможностью их разнообразного представления. Это уже не просто карта, а карта-модель. Набор технических и программных средств, которым сегодня овладели историки, позволяет воплотить эту идею в жизнь, создав новую технологию исторического исследования. Карты-модели позволяют ставить и решать принципиально новые проблемы исторического исследования как на уровне источниковедения, так и на стадии получения исторических выводов. Работа по созданию исторических компьютерных карт ведется нами в двух основных направлениях: картографирование территории Российской империи в начале XX в. и территории юго-запада Сибири в различные исторические эпохи. Это кажется нам методологически плодотворным, поскольку дает возможность соотнесения различных аспектов истории страны в целом и одного региона с его спецификой. В поле нашего зрения следующие содержательные проблемы: изучение распределения и перемещения населения по различным территориям; колонизации новых областей; образования новых населенных пунктов; развитие транспортной системы. В процессе исследования выявляется и вводится в научный оборот множество исторических источников самого разного плана - от картографических до статистических.
другой текст
Цифровое картографирование, цифровая картография — сравнительно только новый сложный термин, а также целый научный теоретический и прикладной раздел, который находится на стыке взаимодействия географии, картографии, математических методов обработки данных и информатики.Как следует из буквального определения данного термина, это научное раздел занимается созданием и изучением цифровых аналогов традиционных картографических изображений. В связи с различными подходами к толкованию сути «цифровой картографии» на сегодня существуют разные взгляды на место и роль этого направления в области наук о Земле — от полного отрицания традиционных методов («теперь все можно автоматизировать и вообще не думать, как это делается»), к заперечяення возможности применения методов автоматизации составления карт («только бумажные карты можно называть «картами», свои произведения программисты пусть называют как-то иначе»). Истина обычно находится между двумя крайними точками зрения — карты, построенные с помощью различных программных и технических средств, давно превзошли по точности и дизайном традиционные технологии, но при их создании должны использоваться основные методы, разработанные картографической и смежными науками для выявления и представления пространственных объ объектов и их взаимосвязей.
Развитие картографии — непрерывный процесс, включающий теорию и технологию создания карт.Теоретическая картография изучает основные положения о форме и методах связи между реально существующими объектами и процессами и их отображением на картах. Центральным объектом картографии является собственно карта — образно-знаковая модель, математически определенное, уменьшенное, генерализованное изображение поверхности Земли, другого небесного тела или космического пространства, показывающее размещены или проектируемые на них объекты в принятой системе условных знаков (Баранов и др, 1997)