Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Параллельные генетические алгоритмы




Тема: Жизненный цикл интеллектуальной системы

Этап 4: Оценка системы

После завершения этапа разработки промышленной экспертной системы необходимо провести ее тестирование в отношении критериев эффективности. К тестированию широко привлекаются другие эксперты с целью апробирования работоспособности системы на различных примерах. Экспертные системы оцениваются главным образом для того, чтобы проверить точность работы программы и ее полезность. Оценку можно проводить, исходя из различных критериев, которые сгруппируем следующим образом:

- критерии пользователей (понятность и "прозрачность" работы системы, удобство интерфейсов и др.);

- критерии приглашенных экспертов (оценка советов-решений, предлагаемых системой, сравнение ее с собственными решениями, оценка подсистемы объяснений и др.);

- критерии коллектива разработчиков (эффективность реализации, производительность, время отклика, дизайн, широта охвата предметной области, непротиворечивость БЗ, количество тупиковых ситуаций, когда система не может принять решение, анализ чувствительности программы к незначительным изменениям в представлении знаний, весовых коэффициентах, применяемых в механизмах логического вывода, данных и т.п.).

Этап 5: Стыковка системы

На этом этапе осуществляется стыковка экспертной системы с другими программными средствами в среде, в которой она будет работать, и обучение людей, которых она будет обслуживать. Иногда это означает внесение существенных изменений. Такое изменение требуетнепременного вмешательства инженера по знаниям или какого-либо другого специалиста, который сможет модифицировать систему. Под стыковкой подразумевается также разработка связей между экспертной системой и средой, в которой она действует.

Когда экспертная система уже готова, инженер по знаниям должен убедиться в том, что эксперты, пользователи и персонал знают, как эксплуатировать и обслуживать ее. После передачи им своего опыта в области информационной технологии инженер по знаниям может полностью предоставить ее в распоряжение пользователей.

Для подтверждения полезности системы важно предоставить каждому из пользователей возможность поставить перед ЭС реальные задачи, а затем проследить, как она выполняет эти задачи. Чтобы система была одобрена, необходимо представить ее как помощника, освобождающего пользователей от обременительных задач, а не как средство их замещения.

Стыковка включает обеспечение связи ЭС с существующими базами данных и другими системами на предприятии, а также улучшение системных факторов, зависящих от времени, чтобы можно было обеспечить ее более эффективную работу и улучшить характеристики ее технических средств, если система работает в необычной среде (например, связь с измерительными устройствами).

Этап 6: Поддержка системы

При перекодировании системы на язык, подобный Си, повышается ее быстродействие и увеличивается переносимость, однако гибкость при этом уменьшается. Это приемлемо лишь в том случае, если система сохраняет все знания проблемной области, и это знание не будет изменяться в ближайшем будущем. Однако, если экспертная система создана именно из-за того, что проблемная область изменяется, то необходимо поддерживать систему в инструментальной среде разработки.


Тема: Эволюционное моделирование

Виды генетических алгоритмов

Существуют различные модели генетического алгоритма (классический, простой генетический алгоритм, гибридный, CHC генетический алгоритм и др.). Они различаются по стратегиям отбора и формирования нового поколения особей, операторами генетического алгоритма, кодированием генов и т.д.

CHC-алгоритм

CHC (Cross generational elitist selection, Heterogenous recombination, Cataclysmic mutation) был предложен Эсхелманом и характеризуется следующими параметрами:

1. Для нового поколения выбираются N лучших различных особей среди родителей и детей. Дублирование строк не допускается.

2. Для скрещивания выбирается случайная пара, но не допускается, чтобы между родителями было мало хэммингово расстояние или мало расстояние между крайними различающимися битами.

3. Для скрещивания используется разновидность однородного кроссовера HUX (Half Uniform Crossover): ребенку переходит ровно половина битов каждого родителя.

4. Размер популяции небольшой, около 50 особей. Этим оправдано использование однородного кроссовера.

CHC противопоставляет агрессивный отбор агрессивному кроссоверу, однако все равно малый размер популяции быстро приводит ее к состоянию, когда создаются только более или менее одинаковые строки. В таком случае CHC применяет cataclysmic mutation: все строки, кроме самой приспособленной, подвергаются сильной мутации (изменяется около трети битов). Таким образом, алгоритм перезапускается и далее продолжает работу, применяя только кроссовер.

Genitor

Этот алгоритм был создан Д. Уитли. Genitor-подобные алгоритмы отличаются от классического ГА следующими тремя свойствами:

1. На каждом шаге только одна пара случайных родителей создает только одного ребенка.

2. Этот ребенок заменяет не родителя, а одну из худших особей популяции (в первоначальном Genitor – самую худшую).

3. Отбор особи для замены производится по ее рейтингу, а не по приспособленности.

В Genitor поиск гиперплоскостей происходит лучше, а сходимость быстрее, чем у классического генетического алгоритма, предложенного Холландом.

Гибридные алгоритмы

Идея гибридных алгоритмов (hybrid algorithms) заключается в сочетании генетического алгоритма с некоторым другим методом поиска, подходящим в данной задаче. В каждом поколении каждый полученный потомок оптимизируется этим методом, после чего производятся обычные для генетического алгоритма действия.

Такой вид развития называется ламарковой эволюцией, при которой особь способна обучаться, а затем полученные навыки записывать в собственный генотип, чтобы потом передать их потомкам. И хотя такой метод ухудшает способность алгоритма искать решение с помощью отбора гиперплоскостей, однако на практике гибридные алгоритмы оказываются очень удачными. Это связано с тем, что обычно велика вероятность того, что одна из особей попадет в область глобального максимума и после оптимизации окажется решением задачи.

Параллельные генетические алгоритмы

Генетические алгоритмы можно организовать как несколько параллельно выполняющихся процессов, это увеличит их производительность.

Рассмотрим переход от классического генетического алгоритма к параллельному. Для этого будем использовать турнирный отбор. Заведем N / 2 процесса (здесь и далее процесс подразумевается как некоторая машина, процессор, который может работать независимо). Каждый из них будет выбирать случайно из популяции 4 особи, проводить 2 турнира и скрещивать победителей. Полученные дети будут записываться в новое поколение. Таким образом, за один цикл работы одного процесса будет сменяться целое поколение.

Островная модель

Островная модель (island model, рис. 17) – это тоже модель параллельного генетического алгоритма. Она заключается в следующем: пусть у нас есть 16 процессов и 1600 особей. Разобьем их на 16 подпопуляций по 100 особей. Каждая их них будет развиваться отдельно с помощью некого генетического алгоритма. Таким образом, можно сказать, что мы расселили особи по 16-ти изолированным островам.

 

Рис. 17. Островная модель генетического алгоритма

 

Изредка (например, каждые 5 поколений) процессы (или острова) будут обмениваться несколькими хорошими особями. Этот процесс называется миграцией. Миграция позволяет островам обмениваться генетическим материалом.

Так как населенность островов обычно бывает невелика, подпопуляции будут склонны к преждевременной сходимости. Поэтому важно правильно установить частоту миграции. Чересчур частая миграция (или миграция слишком большого числа особей) приведет к смешению всех подпопуляций, и тогда островная модель будет несильно отличаться от обычного генетического алгоритма. Если же миграция будет слишком редкой, то она не сможет предотвратить преждевременного схождения подпопуляций.

Генетические алгоритмы стохастичны, поэтому при разных запусках популяция может сходиться к разным решениям (хотя все они в некоторой степени «хорошие»). Островная модель позволяет запустить алгоритм сразу несколько раз и пытаться совмещать «достижения» разных островов для получения в одной из подпопуляций наилучшего решения.





Поделиться с друзьями:


Дата добавления: 2016-09-06; Мы поможем в написании ваших работ!; просмотров: 1573 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Жизнь - это то, что с тобой происходит, пока ты строишь планы. © Джон Леннон
==> читать все изречения...

2264 - | 2037 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.