Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Параметрическое исследование задачи

Элементы стохастического программирования и теории управления запасами

 

Отчет о лабораторной работе №5

по курсу “Основы теории принятия решений”

 

ЯГТУ 220400.62-С8 ЛР

 

 

Отчет выполнили

студенты гр. МА-13

____________ А. Ю. Комаров

«___» ____________ 2014

 

 

Цель работы

Получение навыка постановки и решения простейшей задачи управления запасами с элементами стохастического программирования, а также анализа оптимального решения задачи.

 

Условия задачи

Продавец приобретает х единиц продукции (предложение) и продает их. Спрос покупателей – q единиц продукции – случайная величина, распределенная по нормальному закону p(q) (диф. кривая распределения):

 

где qcp средний спрос; σ – среднеквадратичное отклонение, характеризующее разброс (неопределенность) спроса.

В случае если закупка больше спроса (x > q), то остатки продукции на складе будут равны величине (x - q). Если считать стоимость хранения единицы продукции равную с1, то затраты будут вычисляться по выражению:

 

 

В случае если закупка меньше спроса (x < q), то величина недопоставки продукции будет равна (q – x). Если считать потери от недопоставки единицы продукции равными c2, то общие потери от недопоставки (штраф за невыполнение контракта на поставку) будет вычисляться по выражению:

 

Средние убытки от колебания спроса при решении продавца купить x единиц продукции:

 

 

Требуется найти объем закупки продукции, минимизирующий средние убытки продавца.

 

Исходные данные

σ = 15;

qcp = 230 [единиц];

c1 = 5 [единиц];

c2 = 12 [единиц].

Решение задачи

Формализованная запись задачи

Дифференциальная кривая распределения спроса покупателей:

 

 

Затраты продавца на хранения излишней продукции:

 

 

Потери продавца от недопоставки продукции:

 

И, следовательно, минимизируемые средние убытки продавца:

 

При ограничениях:

 

 

Решим данную задачу в среде MathCad:

 

 

 

 

3.2 График зависимости средних потерь продавца от объема закупки F(x)

Рис. 1 – График зависимости средних потерь продавца от объема закупки.

 

Как видно, для построения графика использовался поточечный метод, меняя при этом значение количества приобретаемой продукции x в пределах ± 30 %.

Далее по графику находим объем закупки продукции, минимизирующий средние убытки продавца - 238 [единиц]. И сами убытки – 87.86 [денежных единиц].

 

Параметрическое исследование задачи

Меняя значения параметров задачи c1, qcp, σ определим зависимость оптимального уровня закупки и средних потерь продавца от данных значений и построим соответствующие таблицы и графики.

 

4.1 Зависимость от платы за хранения единицы массы запасенного для продажи товара с1

Таблица 1. Зависимость от изменения параметра с1

c1 x F(x)
  246.014 47.385
  246.014 47.385
  242.624 62.991
  240.117 76.266
  238.121 87.862
  236.461 98.172
  235.041 107.457
  233.8 115.903
  232.7 123.647

Рис. 2 – График к таблице 1.

 

4.2 Зависимость от ожидаемого среднего значения спроса qcp

 

Таблица 2. Зависимость от изменения параметра qcp

qcp x F(x)
  178.121 87.862
  193.121 87.862
  208.121 87.862
  223.121 87.862
  238.121 87.862
  253.121 87.862
  268.121 87.862
  283.121 87.862
  298.121 87.862

 

Рис. 3 – График к таблице 2.

4.3 Зависимость от неопределенности спроса σ

Таблица 3. Зависимость от изменения параметра σ

σ x F(x)
  231.624 17.572
  233.248 35.145
  234.873 52.717
  236.497 70.29
  238.121 87.862
  239.745 105.435
  241.369 123.007
  242.993 140.58
  244.618 158.152

 

Рис. 4 – График к таблице 3.

 

5 Выводы о влиянии параметров задачи на её оптимальное решение

Из таблицы 1 и соответствующего ей графика видно, что платы за хранения единицы массы запасенного для продажи товара с1 однозначно приводит к уменьшению количества закупаемой продукции x во избежание больших денежных расходов на хранения. Зависимость с1 от F(x) примерно обратно пропорциональная и, следовательно, среднее значение убытков F(x) повышается, что означает, что продавцу следует закупать количество продукции не выше среднего спроса.

Рис. 3 показывает, что увеличение (уменьшение) среднего спроса qcp влияет лишь на объем закупаемой продукции. Средние убытки F(x) при этом несут постоянный характер. Из этого следует, что величина среднего спроса qcp никак не влияет на изменение дохода.

Теперь, если мы проанализируем отклонение, характеризующее неопределенность спроса σ, то по графику, соответствующему таблице 3, можно сказать, что при увеличении отклонения σ средние убытки F(x) и количество продукции x увеличиваются пропорционально друг другу. Поэтому при достаточных величинах неопределенности спроса σ продавец понесет убытки либо из-за недопоставки с2, либо чрезмерной закупки продукции с1.



<== предыдущая лекция | следующая лекция ==>
йымның қаржы нәтижесін қалыптастыру, есеп беруді дайындау | 
Поделиться с друзьями:


Дата добавления: 2016-09-06; Мы поможем в написании ваших работ!; просмотров: 315 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Два самых важных дня в твоей жизни: день, когда ты появился на свет, и день, когда понял, зачем. © Марк Твен
==> читать все изречения...

2253 - | 2077 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.