Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Химические свойства оксидов




ОСНОВНЫЕ КЛАССЫ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

СТЕПЕНЬ ОКИСЛЕНИЯ И СОСТАВЛЕНИЕ

ХИМИЧЕСКИХ ФОРМУЛ

Состав химических соединений выражают химическими формулами, при составлении которых используется характеристика состояния элемента в соединении – степень окисления (с. о.).

Степень окисления – условный заряд атома в химическом соединении.

Степень окисления при необходимости указывают над символом элемента в формуле или римской цифрой в названии вещества.

Для расчета степеней окисления элементов используют следующие правила:

v степень окисления элемента в простом веществе равна нулю ;

v степень окисления кислорода в большинстве сложных веществ равна -2 ;

v степень окисления водорода и щелочных металлов в большинстве сложных веществ равна +1 ;

v алгебраическая сумма степеней окисления всех атомов в молекуле равна нулю, в ионе – его заряду.

Пример. Рассчитайте степени окисления элементов в соединениях: а) NH3; б) P2O5; в) NH4NO3.

 

Решение

а) С. о. водорода равна +1. С. о. азота рассчитываем, приравнивая алгебраическую сумму с. о. атомов, образующих данную молекулу, нулю. Сумма с.о. атома азота (x) и трех атомов водорода 3(+1)

x + 3(+1) = 0, откуда x = -3. .

б) С.о. кислорода равна -2. Аналогично предыдущему составляем выражение алгебраической суммы с.о. двух атомов фосфора (2х) и пяти атомов кислорода:

2х + 5(-2) = 0, откуда х = +5. .

в) Большинство элементов в соединениях проявляют несколько различных степеней окисления. Рассчитать степени окисления атомов азота в соединении NH4NO3 можно, разделив эту соль на ионы NH4+ и NO3-. Далее для каждого иона составляем выражение суммы степеней окисления, включая неизвестную степень окисления атома азота х, и приравниваем его заряду иона.

Для иона NH4+:

х + 4 (+1) = +1, х = -3;

для иона NO3-:

х + 3(-2) = -1, х = +5.

Формула нитрата аммония с указанием с. о. азота: .

КЛАССЫ НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Химические вещества могут быть простыми и сложными. Среди простых веществ выделяют металлы и неметаллы (см. далее). Граница между металлами и неметаллами размыта, выделенные элементы проявляют двойственность свойств.

 

(H) Металлы Неметаллы H He
Li Be   B C N O F Ne
Na Mg   Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba La* Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra Ac** Ku                            

La* – первый элемент семейства лантаноидов (14 лантаноидов),

Ас** – первый элемент семейства актиноидов (14 актиноидов).

Сложные неорганические соединения делят на три основных класса – оксиды, гидроксиды и соли.

Оксиды

Оксиды – соединения элементов с кислородом.

Если элементы проявляют переменную с.о., то образуют оксиды различного состава, что учитывают в названии оксида указанием с.о. элемента. Если элемент образует один оксид, то в названии оксида с.о. не указывают.

Например, Al2O3 – оксид алюминия (алюминий проявляет единственную с. о., равную +3); N2O3 – оксид азота (III) (азот проявляет различные с. о., в данном оксиде с. о. азота равна +3).

Оксиды делят на несолеобразующие и солеобразующие.

Несолеобразующиеоксиды весьма немногочисленны – например CO, NO, N2O.

Солеобразующие оксиды по химическим свойствам делят на три группы – основные, кислотные и амфотерные.

Основные оксиды образуют только типичные металлы в степени окисления +1, +2 (не всегда), +3 (редко).

Кислотные оксиды образуют неметаллы, а также металлы в высоких степенях окисления (+6, +7). Оксиды неметаллов ‑ SO2,P2O5, оксиды металлов – , .

Амфотерные оксиды образуют металлы в степени окисления +3, +4, +5, иногда +2, а также элементы, расположенные вблизи условной диагонали, разделяющей металлы и неметаллы (As ‑ As2O3, Sb ‑ Sb2O3). Амфотерные оксиды некоторых металлов в степени окисления +2 –ZnO, PbO, SnO, BeOполезно запомнить. Амфотерные оксиды сочетают свойства основных и кислотных оксидов.

Химические свойства оксидов

v Отношение к воде

Из основных оксидов с водой реагируют только оксиды щелочных (IА подгруппа) и щелочноземельных (IIА подгруппа, кроме Be и Mg) металлов, в результате образуются растворимые основные гидроксиды

BaO + H2O = Ba(OH)2.

Большинство кислотных оксидов реагируют с водой, в результате образуются растворимые кислотные гидроксиды (кислоты)

SO3 + H2O = H2SO4.

Некоторые кислотные оксиды, в том числе SiO2, с водой не реагируют.

Амфотерные оксиды с водой не реагируют.


 

v Кислотно-основные взаимодействия

Оксиды вступают в кислотно-основные взаимодействия, в результате которых образуются соли. Реагируют только вещества, одно из которых проявляет кислотные свойства, а другое ‑ основные

MgO + SiO2 = MgSiO3,

основной кислотный соль

оксид оксид

BaO + Al2O3 = Ba(AlO2)2,

основной амфотерный соль

оксид оксид

BaO + 2HNO3 = Ba(NO3)2 + H2O,

основной кислота соль

оксид

N2O5 + PbO = Pb(NO3)2,

кислотный амфотерный соль

оксид оксид

P2O5 + 6NaOH = 2Na3PO4 + 3H2O,

кислотный основание соль

оксид

ZnO + H2SO4 = ZnSO4 + H2O,

амфотерный кислота соль

оксид

ZnO + 2NaOH = Na2ZnO2 + H2O.

амфотерный основание соль

оксид (щелочь)

Амфотерные оксиды в реакциях с кислотами и кислотными оксидами проявляют основные свойства, в реакциях со щелочами и основными оксидами – кислотные свойства.

Гидроксиды

Гидроксиды – соединения, в состав которых входят элемент (Э), кроме фтора и кислорода, и гидроксогруппа OH.

Общая формула гидроксидов – Э(OH)n, где n равно степени окисления элементаи принимает значения 1÷6. При n > 2 гидроксиды могут существовать в разных гидратных орто- и мета- формах. Переход орто-формы в мета-форму можно представить как потерю (вычитание) одной или двух молекул воды, например:

Э(ОН)3 ® ЭOOH + H2O

орто- мета-

форма форма

Метаформы гидроксидов содержат в своем составе, кроме гидроксогрупп, атомы кислорода.

Гидроксиды делят на три группы – основные (основания), кислотные (кислородсодержащие кислоты) и амфотерные.

Каждому солеобразующему оксиду соответствует гидроксид, причем в паре оксид - соответствующий гидроксид одинаковы кислотно-основной характер соединений и их отношение к воде.

Na2O – основной оксид, реагирует с водой,

NaOH – основание, растворимое в воде.

SiO2 – кислотный оксид, нерастворимый в воде,

H2SiO3 – кислота, в воде не растворяется.

SnO – амфотерный оксид, нерастворимый в воде,

Sn(OH)2 – амфотерный гидроксид, нерастворимый в воде.

Основания. Основания– гидроксиды, которые в водных растворах диссоциируют (распадаются) с образованием гидроксид-ионов (OH-).

Основания образуют элементы, соответствующие оксиды которых имеют основной характер. Название оснований составляют из слова ‘‘гидроксид’’ и названия элемента с указанием степени окисления, если степень окисления переменна, например: Ca(OH)2 – гидроксид кальция, Fe(OH)3 – гидроксид железа (III).

По растворимости в воде основания делят на две группы – растворимые (щелочи) и нерастворимые. Растворимые основания образуют щелочные и щелочноземельные металлы (прил. 3).

Кислоты. Кислоты – соединения, которые в водных растворах диссоциируют с образованием ионов водорода (H+). В формулах кислот атомы водорода ставят на первое место: НnЭOm.

Кислоты имеют традиционные названия, которые производят от русского названия центрального атома с прибавлением различных суффиксов и окончаний, которые определяются степенью окисления центрального атома:

H2SO4 – серная кислота;

H2SO3– сернистая кислота;

HClO4 – хлорная кислота;

HClO – хлорноватистая кислота.

В класс гидроксидов не входят бескислородные кислоты (H2S, HF, HCl, HBr, HI), их называют соответственно сероводородной, фтороводородной, хлороводородной (соляной), бромоводородной, йодоводородной кислотами.

Амфотерные гидроксиды. Амфотерные гидроксиды обладают свойствами оснований и кислот. Формулы и названия амфотерных гидроксидов принято составлять аналогично формулам оснований, однако для удобства им можно придать и форму кислот:

Zn(OH)2 – гидроксид цинка (или H2ZnO2 – цинковая кислота).

Амфотерные гидроксиды нерастворимы в воде.





Поделиться с друзьями:


Дата добавления: 2016-09-06; Мы поможем в написании ваших работ!; просмотров: 482 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент всегда отчаянный романтик! Хоть может сдать на двойку романтизм. © Эдуард А. Асадов
==> читать все изречения...

2439 - | 2177 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.