Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Целочисленное программирование




Допустим, что к условию задачи (1.1) добавилось требование целочисленности значений всех переменных. В этом случае описанный выше процесс ввода условия задачи необходимо дополнить следующими шагами.

· В экранной форме укажите, на какие переменные накладывается требование целочисленности (этот шаг делается для наглядности восприятия условия задачи) (рис.1.13).

· В окне "Поиск решения" (меню "Сервис"®"Поиск решения"), нажмите кнопку "Добавить" и в появившемся окне "Добавление ограничений" введите ограничения следующим образом (рис.1.14):

- в поле "Ссылка на ячейку" введите адреса ячеек переменных задачи, то есть $B$3:$E$3;

- в поле ввода знака ограничения установите "целое" ;

- подтвердите ввод ограничения нажатием кнопки " OK" .

 

 

Рис.1.13. Решение задачи (1.1) при условии целочисленности ее переменных

 

 

Рис.1.14. Ввод условия целочисленности переменных задачи (1.1)

 

На рис.1.13 представлено решение задачи (1.1), к ограничениям которой добавлено условие целочисленности значений ее переменных.

 

Двухиндексные задачи ЛП

Двухиндексные задачи ЛП вводятся и решаются в Excel аналогично одноиндексным задачам. Специфика ввода условия двухиндексной задачи ЛП состоит лишь в удобстве матричного задания переменных задачи и коэффициентов ЦФ.

Рассмотрим решение двухиндексной задачи, суть которой заключается в оптимальной организации транспортных перевозок штучного товара со складов в магазины (табл.1.2).

Исходные данные транспортной задачи

Таблица 1.2

Тарифы, руб./шт. 1-й магазин 2-й магазин 3-й магазин Запасы, шт.
1-й склад        
2-й склад        
3-й склад        
4-й склад        
Потребности, шт.        

Целевая функция и ограничения данной задачи имеют вид

(1.5)

 

Экранные формы, задание переменных, целевой функции, ограничений и граничных условий двухиндексной задачи (1.5) и ее решение представлены на рис.1.15, 1.16, 1.17 и в табл.1.3.

Рис.1.15. Экранная форма двухиндексной задачи (1.5)

(курсор в целевой ячейке F15)

Таблица 1.3

Формулы экранной формы задачи (1.5)

Объект математической модели Выражение в Excel
Переменные задачи C3:E6
Формула в целевой ячейке F15 =СУММПРОИЗВ(C3:E6;C12:E15)
Ограничения по строкам в ячейках F3, F4, F5, F6 =СУММ(C3:E3) =СУММ(C4:E4) =СУММ(C5:E5) =СУММ(C6:E6)
Ограничения по столбцам в ячейках С7, D7, E7 =СУММ(C3:C6) =СУММ(D3:D6) =СУММ(E3:E6)
Суммарные запасы и потребности в ячейках H8, G9 =СУММ(H3:H6) =СУММ(C9:E9)

 

 

Рис.1.16. Ограничения и граничные условия задачи (1.5)

 

Рис.1.17. Экранная форма после получения решения задачи (1.5)

(курсор в целевой ячейке F15)

 





Поделиться с друзьями:


Дата добавления: 2016-09-03; Мы поможем в написании ваших работ!; просмотров: 327 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Вы никогда не пересечете океан, если не наберетесь мужества потерять берег из виду. © Христофор Колумб
==> читать все изречения...

2307 - | 2123 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.