Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Вероятность безотказной работы элементов КСНО




Все элементы можно условно разделить на две группы:

— элементы, обслуживающие все стартовые позиции;

— элементы, обслуживающие каждую позицию индивидуально.

В соответствии с таким делением важнейшей характеристикой КСНО является количество каналов для выполнения поставленной задачи перед КСНО и ЛА.

Если комплекс включает один канал по выполняемой работе и n каналов по ЛА, то элементы 1, 2, 3,..., Nб.p составляют общую часть комплекса по каналу выполняемой задачи, а элементы 1, 2, 3, …, NЛА входят в каждый канал по ЛА.

Если элементы канала по выполняемой задаче соединены последовательно, то вероятность их нормального функционирования определяется по теореме умножения вероятностей независимых событий:

, (4.84)

где Рб.р.об — вероятность нормальной работы 1-го элемента по каналу выполняемой работы.

В этом случае выход из строя одного элемента по каналу выполняемой задачи приводит к срыву работы всего комплекса в целом.

В случае последовательного соединения элементов по каналу ЛА вероятность нормального функционирования j -го канала будет

, (4.85)

где Рi б.рЛА — вероятность нормальной работы i -го элемента по j -му каналу ЛА.

Вероятность нормальной работы n -канальной системы по ЛА, т. е. вероятность нормального функционирования не менее m каналов по ЛА из n, определяется выражением

, (4.86)

где — число сочетаний из n элементов по m.

Если комплекс включает один канал по выполняемой задаче и n каналов по ЛА, то вероятность выполнения поставленной задачи всем комплексом ЛА (n -ЛА) с учетом вероятности нормального функционирования КСНО определяется по формуле

, (4.87)

где Рб.р.об — вероятность нормальной работы по каналу выполняемой задачи;

Рб.рЛА — вероятность нормальной работы по одному каналу ЛА (в этом случае Рб.рЛА для всех каналов по ЛА одинакова);

РЛА — вероятность действия ЛА при условии нормальной работы КСНО;

n — число ЛА, использованных в операции.

Из анализа формулы видно, что отказ в работе элементов по каналу решаемой задачи влияет на эффективность всех ЛА в целом, а отказ в работе элементов по каналу ЛА влияет только на эффективность одного ЛА.

Надежность работы элементов (Рб.р), входящих как в канал по решаемой задаче, так и в каналы по ЛА, определяется опытным путем на основе статистических данных, накопленных в процессе эксплуатации. Обычно =const и

, (4.88)

где — интенсивность отказов, определяемая опытным путем;

ti б.р — продолжительность работы i -го элемента.

Количественными показателями надежности являются:

— вероятность безотказной работы;

— частота отказов;

— интенсивность отказов;

— среднее время безотказной работы.

Вероятность безотказной работы — это вероятность того, что в пределах заданного промежутка времени t и заданных условиях работы отказ не произойдет. Она определяется как

, (4.89)

где N — число элементов, подвергнутых испытаниям; n (t) — число вышедших из строя элементов к моменту времени t.

Иногда пользуются понятием “вероятность отказа”:

Q(t)=1-P(t). (4.90)

Плотность распределения времени безотказной работы определяется производной по времени от вероятности отказа:

. (4.91)

Если имеется кривая распределения безотказной работы по времени (рис. 4.6), то, задаваясь уровнем надежности, легко определить время работы Т, в течение которого надежность изделия будет приемлемой.

Частота отказов α(t) представляет собой отношение числа отказавших изделий в единицу времени к общему числу изделий, взятых для испытания:

, (4.92)

где — число отказавшихся изделий за время Δt.

Частота отказов равна плотности распределения времени безотказной работы;

α(t) = Q'(t). (4.93)

Интенсивность отказов — это отношение числа отказавшихся изделий в единицу времени к среднему числу изделий, продолжающих исправно работать при условии, что отказавшие изделия не восстанавливаются и не заменяются:

, (4.94)

где .

Интенсивность отказов — это условная плотность вероятности возникновения отказа невосстанавливаемого объекта, определяемая для рассматриваемого момента времени при условии, что до этого момента отказ не возник:

.

После интегрирования получаем

или . (4.96)

Зависимость интенсивности отказов от времени эксплуатации показана на рис. 4.7, где I — период приработки; II — период нормальной работы; III — период старения.

Первый участок кривой обычно аппроксимируется выражением вида

, (4.97)

где NИ — количество испытанных образцов; Qн — начальный уровень

отказа, QН =1-Рн; b — статистический коэффициент, характеризующий градиент роста уровня надежности.

На втором участке, где интенсивность постоянна, т. е. = const, вероятность безотказной работы

. (4.98)

На третьем участке статистика показывает, что вероятность безотказной работы описывается зависимостью

, (4.99)

где Ф (Z) — интеграл вероятности:

; (4.100)

— среднеквадратическое отклонение времени безотказной работы от его среднего значения; tcp — среднее время безотказной работы.

Среднее время безотказной работы — это математическое ожидание безотказной работы:

. (4.101)

 





Поделиться с друзьями:


Дата добавления: 2016-09-03; Мы поможем в написании ваших работ!; просмотров: 570 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лучшая месть – огромный успех. © Фрэнк Синатра
==> читать все изречения...

2196 - | 2086 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.