Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Общие сведения о биполярных транзисторах




Содержание

Задание на курсовую работу……………………………………………....3

Введение…………………………………………………………………….4

1.Теоретическая часть…………………………………………………….5

1.1 Общие сведения о биполярных транзисторах……………………..5

1.2 Общие сведения об электронных усилителях…………………….10

1.3 Усилительный каскад на биполярном транзисторе с общим коллектором (эмиттерный повторитель)……………………………….11

2. Практическая часть……………………………………………………13

3. Расчетная часть………………………………………………………..16

Заключение……………………………………………………………….20

Список литературы………………………………………………………21

Приложение (электрическая принципиальная схема)………………...22

 

Введение

В современной электронике все большая роль отводится использованию достижений цифровой и (в несколько меньшей мере) аналоговой микросхемотехники. Устройства на микросхемах (более того, иногда только на микросхемах) стали проникать даже в те области, где ранее никому не приходило в голову их использовать из-за явно большей себестоимости по сравнению с простейшими транзисторными цепочками (различные датчики, игрушки, бытовые и промышленные индикаторы и сигнализаторы и т.п.). Несмотря на это все еще остаются сферы, где применение дискретных элементов по-прежнему популярно, а иногда и неизбежно. Кроме того, знание способов включения и режимов работы транзисторов, а также методик построения и анализа транзисторных схем является обязательным для любого инженера – электронщика, даже если ему и не приходится в реальной жизни проектировать схемы на дискретных элементах (ведь современные микросхемы — суть транзисторные схемы, помещенные в один общий корпус с внешними выводами).

Целью данной работы является расчет параметров усилительного каскада с общим коллектором (ОК).

В результате выполнения данной работы, будут получит базовые навыки проведения инженерных расчётов аналоговых электронных устройств.

В первом разделе, теоретическая часть, будут рассмотрены общие сведения об усилителях и транзисторах.

Во втором разделе, практическая часть, будет рассмотрена схема электрическая принципиальная усилительного каскада с ОК.

В третьем разделе, практическая часть, будет проведен расчет основных параметров схемы и выбор элементной базы.

В заключении будут подведены итоги работы.

 

 

Теоретическая часть

Общие сведения о биполярных транзисторах

Биполярный транзистор — трехэлектродный полупроводниковый прибор, один из типов транзистора. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают npn и pnp транзисторы (n (negative) — электронный тип примесной проводимости, p (positive) — дырочный). В биполярном транзисторе, в отличие от полевого транзистора, используются заряды одновременно двух типов, носителями которых являются электроны и дырки (от слова «би» — «два»). Схематическое устройство транзистора показано на рис 1.

Рис 1. Биполярный транзистор.

Электрод, подключённый к центральному слою, называют базой, электроды, подключённые к внешним слоям, называют коллектором и эмиттером. На простейшей схеме различия между коллектором и эмиттером не видны. В действительности же главное отличие коллектора — большая площадь p-n-перехода. Кроме того, для работы транзистора абсолютно необходима малая толщина базы.

Биполярный точечный транзистор был изобретен в 1947 году, в течение последующих лет он зарекомендовал себя как основной элемент для изготовления интегральных микросхем, использующих транзисторно-транзисторную, резисторно-транзисторную и диодно-транзисторную логику.

Режимы работы биполярного транзистора:

1) Нормальный активный режим. Переход эмиттер-база включен в прямом направлении (открыт), а переход коллектор-база — в обратном (закрыт) UЭБ>0; UКБ<0 (для транзистора p-n-p типа, для транзистора n-p-n типа условие будет иметь вид UЭБ<0; UКБ>0);

2) Инверсный активный режим. Эмиттерный переход имеет обратное включение, а коллекторный переход — прямое.

3) Режим насыщения. Оба p-n перехода смещены в прямом направлении (оба открыты). Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения. Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками Uэб и Uкб. В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнется проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (IЭ.нас) и коллектора (IК.нас).

4) Режим отсечки. В данном режиме оба p-n перехода прибора смещены в обратном направлении (оба закрыты). Режим отсечки транзистора получается тогда, когда эмиттерный и коллекторный р-n-переходы подключены к внешним источникам в обратном направлении. В этом случае через оба р-n-перехода протекают очень малые обратные токи эмиттера (IЭБО) и коллектора (IКБО). Ток базы равен сумме этих токов и в зависимости от типа транзистора находится в пределах от единиц микроампер — мкА (у кремниевых транзисторов) до единиц миллиампер — мА (у германиевых транзисторов).

5) Барьерный режим. В данном режиме база транзистора по постоянному току соединена накоротко или через небольшой резистор с его коллектором, а в коллекторную или в эмиттерную цепь транзистора включается резистор, задающий ток через транзистор. В таком включении транзистор представляет из себя своеобразный диод, включенный последовательно с токозадающим резистором. Подобные схемы каскадов отличаются малым количеством комплектующих, хорошей развязкой по высокой частоте, большим рабочим диапазоном температур, нечувствительностью к параметрам транзисторов.

Схема включения транзистора с общей базой (ОБ) изображена на рис 2.

Рис 2. Схема включения с ОБ.

Среди всех трех конфигураций обладает наименьшим входным и наибольшим выходным сопротивлением. Имеет коэффициент усиления по току, близкий к единице, и большой коэффициент усиления по напряжению. Фаза сигнала не инвертируется.

Коэффициент усиления по току: Iвых/Iвх=Iк/Iэ=α [α<1]

Входное сопротивление Rвх=Uвх/Iвх=Uбэ/Iэ.

Входное сопротивление для схемы с общей базой мало и не превышает 100 Ом для маломощных транзисторов, так как входная цепь транзистора при этом представляет собой открытый эмиттерный переход транзистора.

Достоинства:

· Хорошие температурные и частотные свойства.

· Высокое допустимое напряжение

Недостатки схемы с ОБ:

· Малое усиление по току, так как α < 1

· Малое входное сопротивление

· Два разных источника напряжения для питания.

Схема включения с общим эмиттером (ОЭ) показана на рис 3:

Рис 3. Схема с ОЭ.

Iвых=Iк

Iвх=Iб

Uвх=Uбэ

Uвых=Uкэ

· Коэффициент усиления по току: Iвых/Iвх=Iк/Iб=Iк/(Iэ-Iк) = α/(1-α) = β [β>>1]

· Входное сопротивление: Rвх=Uвх/Iвх=Uбэ/Iб

Достоинства:

· Большой коэффициент усиления по току

· Большой коэффициент усиления по напряжению

· Наибольшее усиление мощности

· Можно обойтись одним источником питания

· Выходное переменное напряжение инвертируется относительно входного.

Недостатки:

· Худшие температурные и частотные свойства по сравнению со схемой с общей базой

Схема включения биполярного транзистора с ОК изображена на рис 4. Схему с таким включением называют «эмиттерным повторителем».

Рис 4. Схема с ОК.

Iвых=Iэ

Iвх=Iб

Uвх=Uбк

Uвых=Uкэ

· Коэффициент усиления по току: Iвых/Iвх=Iэ/Iб=Iэ/(Iэ-Iк) = 1/(1-α) = β [β>>1]

· Входное сопротивление: Rвх=Uвх/Iвх=(Uбэ+Uкэ)/Iб

Достоинства:

· Большое входное сопротивление

· Малое выходное сопротивление

Недостатки:

· Коэффициент усиления по напряжению меньше 1.





Поделиться с друзьями:


Дата добавления: 2016-09-03; Мы поможем в написании ваших работ!; просмотров: 1970 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Логика может привести Вас от пункта А к пункту Б, а воображение — куда угодно © Альберт Эйнштейн
==> читать все изречения...

2255 - | 2185 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.