Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Тонкие линзы. Изображение предметов с




Помощью линз

Раздел оптики, в котором законы распространения света рассматриваются на основе представления о световых лучах, называется геометрической оптикой. Под световыми лучами понимают нормальные к волновым поверхностям линии, вдоль которых распространяется поток световой энергии. Геометрическая оптика является прибли-женным методом построения изображений в оптических системах. Однако она позволяет разобрать основные явления, связанные с прохождением через них света. Поэтому геометрическая оптика является, основой теории оптических приборов.

Линзы представляют собой прозрачные тела, ограниченные двумя поверхностями (одна из них обычно сферическая, иногда цилиндрическая, а вторая сферическая или плоская), преломляющими световые лучи, способные формировать оптические изобра-жения предметов. Материалом для линз служат стекло, кварц, кристаллы, пластмассы и т.п. По внешней форме (рис.4) линзы делятся на: 1) двояковыпуклые; 2) плоско-выпуклые; 3) двояковогнутые; 4) плоско-вогнутые; 5) выпукло-вогнутые; 6) вогнуто-выпуклые. По оптическим свойствам линзы делятся на собирающие и рассеивающие.

Линза называется тонкой, если её толщина (расстояние между огра-ничивающими поверхно-стями) значительно мень-ше по сравнению с радиусами поверхностей, ограничивающих линзу. Прямая, проходящая через центры кривизны поверхностей линзы, называется главной оптической осью. Для всякой линзы существует точка, называемая оптическим центром линзы, лежащая на главной оптической оси и обладающая тем свойствам, что лучи проходят сквозь нее не преломляясь.

Формула тонкой линзы имеет вид:

,

где - относительный показатель преломления (n и n 1 – соответственно абсолютные показатели преломления линзы и окружающей среды); R 1 и R 2 – радиусы кривизны поверхностей линзы; a и b – расстояния от линзы до предмета и его изображения (рис.5).

 

Радиус кривизны выпуклой поверхности считается положительным, вогнутой – отрица-тельным. Если а =¥, т.е. лучи падают на линзу параллельным пучком (рис.6, а). Тогда b =OF= f - называется фокусным расстоянием, опре-деляемым по формуле

.

Оно зависит от относительного показателя преломления и радиусов кривизны.

Если b =¥, т.е. изображение находится в бесконечности, то лучи выходят из линзы парал-лельным пучком (рис.6, б) и а = OF = f. Таким образом, фокусные расстояния линзы, окруженной с обеих сторон одинаковой средой, равны. Точки F, лежащие по обе стороны линзы на расстоянии, равном фокусному, называются фокусами линзы. Фокус – это точка, в которой после преломления собираются все лучи, падающие на линзу параллельно главной оптической оси.

Величина называется оптической силой линзы. Её единица – диоптрия (дптр). Диоптрия – оптическая сила линзы с фокусным расстоянием 1 м: 1 дптр=1/м.

Линзы с положительной оптической силой являются собирающими, с отрицательной – рассеивающими. Плоскости, проходящие через фокусы линзы перпендикулярно её главной оптической оси, называются фокальными плоскостями. Рассеивающие линзы имеют мнимые фокусы. В мнимом фокусе сходятся (после преломления) воображаемые продолже-ния лучей, падающих на рассеивающую линзу парал-лельно главной оптической оси (рис. 7).

Отношение линейных размеров изображения и предмета называется линейным увеличением линзы. Отрицательным значе4книям линейного увеличения соответствует действительное изображение (оно переверну-тое), положительным — мнимое изобра­жение (оно прямое). Комбинации собирающих и рассеивающих линз применяются в оптичес-ких приборах, используемых для решения различных научных и технических задач.


 

 


 





Поделиться с друзьями:


Дата добавления: 2016-09-03; Мы поможем в написании ваших работ!; просмотров: 483 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

80% успеха - это появиться в нужном месте в нужное время. © Вуди Аллен
==> читать все изречения...

2238 - | 2103 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.