Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Формулы ошибок простой случайной выборки




  Способ отбора единиц
повторный бесповторный
Средняя ошибка μ: Для средней
Для доли
Предельная ошибка Δ: Для средней
Для доли

 

Доверительные интервалы для генеральной средней –

Доверительные интервалы для генеральной доли –

Доверительная вероятность – функция от t, вероятность находится по приложению3

Формулы для определения численности простой и случайной выборки

  Способ отбора единиц
повторный бесповторный
Численность выборки (n): Для средней
Для доли*
*В случае, когда частость w даже приблизительно неизвестна, в расчет вводят максимальную величину дисперсии доли, равную 0,25 (если w=0,5, то w(1-w)=0,25).

 

Типичная выборка

Применяется в тех случаях, когда из генеральной совокупности можно выделить однокачественные группы единиц (или однородные), затем из каждой группы случайно отобрать определенное число единиц в выборку.

Стандартная среднеквадратическая ошибка:

Повторный отбор - , - средняя из внутригрупповых

Бесповторный отбор -

Отбор единиц при типичной выборке из каждой типичной группы:

1.Равное число единиц , - число единиц, отобранных из i-ой типичной группы, n – общий объем, R – число групп

2.Пропорциональный отбор , - доля i-ой группы в общем объеме генеральной совокупности

3.Отбор единиц с учетом вариации случайного признака

Серийная выборка

Вместо случайного отбора единиц совокупности осуществляется отбор групп (серий, гнезд). Внутри отобранных серий производится сплошное наблюдение.

Средняя стандартная ошибка:

Повторный отбор - , , m – число отобранных серий, - средний уровень признака в серии, - средний уровень признака для всей выборочной совокупности

Бесповторный отбор - , M – общее число серий

 

Малые выборки

Выборки, при которых наблюдением охватывается небольшое число единиц (n<30)

Средняя ошибка малой выборки ,

Вероятность того, что генеральная средняя находится в определенных границах, определяется по формуле , - значение функции Стьюдента (приложение 4)

 

Корреляционная связь

Для оценки однородности совокупности – коэффициент вариации по факторным признакам

, совокупность однородна, если ≤ 33%

Линейный коэффициент корреляции

Несгруппированные данные

Сгруппированные данные -

Оценка существенности линейного коэффициента корреляции

при большом объеме выборки , . Если это отношение больше значения t-критерия Стьюдента (приложение 6, k=n-2, вероятность – 1-α)

при недостаточно большом объеме выборки ,

Корреляционное отношение , , где , ,

Признаки А(да) (нет) Итого
В (да) a b a+b
(нет) c d c+d
Итого a+c b+d n
A,b,c,d – частоты взаимного сочетания (комбинации) двух альтернативных признаков, n – общая сумма частот

 

Коэффициент ассоциации

Коэффициент контингенции

Уравнение регрессии

Линейная

Гиперболичская

Параболическая

Показательная

Для проверки возможности использования линейной функции определяется разность , если она <0,1 то можно применить линейную функцию.

, m – число групп. Если < F-критерия, то можно. (Значение F-критерия определяется по таблице (приложение 5) α=0,05, число степеней свободы числителя (k1 = m-2) и знаменателя (k2 =n-m))

Достоверность уравнения корреляционной зависимости , - средняя квадратическая ошибка, y – фактические значения результативного признака, - значения результативного признака, рассчитанные по уравнению регрессии, l – число параметров в уравнении регрессии.

Если это отношение не превышает 10-15%, то уравнение хорошо отображает изучаемую взаимосвязь.

 

Ряды динамики

Показатели динамики

Показатель Метод расчета
С переменной базой (цепные) С постоянной базой (базисные)
Абсолютный прирост (показывает, на сколько в абсолютном выражении уровень текущего периода больше (меньше) базисного)
Коэффициент роста (показывает, во сколько раз уровень текущего периода больше (меньше) базисного)
Темп роста, % (это коэффициент роста, выраженный в %, показывает, сколько процентов уровень текущего периода составляет по отношению к уровню базисного периоа)
Темп прироста, % (показывает, на сколько % уровень текущего периода больше (меньше) уровня базисного периода)
Абсолютное значение 1% прироста (показывает, какая абсолютная величина скрывается за относительным показателем – одним процентом прироста)

 





Поделиться с друзьями:


Дата добавления: 2016-09-03; Мы поможем в написании ваших работ!; просмотров: 319 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лаской почти всегда добьешься больше, чем грубой силой. © Неизвестно
==> читать все изречения...

2390 - | 2261 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.