Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Править]Условие равновесия системы тел




Этот раздел не завершён. Вы поможете проекту, исправив и дополнив его.  

Для записи условия равновесия системы, состоящей из твёрдых тел, систему разделяют на отдельные части, и записывают уравнения равновесия как для всей системы, так и для её частей [1] . При этом возможны несколько эквивалентных вариантов записи условий равновесия в зависимости от выбора частей системы, для которых записываются уравнения.

Из второго закона Ньютона следует, что если геометрическая сумма всех внешних сил, приложенных к телу, равна нулю, то тело находится в состоянии покоя или совершает равномерное прямолинейное движение. В этом случае принято говорить, что силы, приложенные к телу, уравновешивают друг друга. При вычислении равнодействующей все силы, действующие на тело, можно прикладывать к центру масс.

Чтобы невращающееся тело находилось в равновесии, необходимо, чтобы равнодействующая всех сил, приложенных к телу, была равна нулю.


Рисунок 1.14.1. Равновесие твердого тела под действием трех сил. При вычислении равнодействующей все силы приводятся к одной точке C На рис. 1.14.1 дан пример равновесия твердого тела под действием трех сил. Точка пересечения O линий действия сил и не совпадает с точкой приложения силы тяжести (центр масс C), но при равновесии эти точки обязательно находятся на одной вертикали. При вычислении равнодействующей все силы приводятся к одной точке.

Если тело может вращаться относительно некоторой оси, то для его равновесия недостаточно равенства нулю равнодействующей всех сил.

Вращающее действие силы зависит не только от ее величины, но и от расстояния между линией действия силы и осью вращения.

Длина перпендикуляра, проведенного от оси вращения до линии действия силы, называется плечом силы.

Произведение модуля силы на плечо d называется моментом силы M. Положительными считаются моменты тех сил, которые стремятся повернуть тело против часовой стрелки (рис. 1.14.2).

Правило моментов: тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

2. Несвободное твердое тело — это тело, не имеющее возмож%

ность совершать в рассматриваемый момент любые перемещения

в пространстве.

Под связью для твердого тела или материальной точки понимают

материальные объекты, которые ограничивают свободу перемеще%

ния рассматриваемого твердого тела или материальной точки. Акси%

ома связи: всякую связь можно отбросить или заменить силой, реакцией

связей (в простейшем случае) или системой сил (в общем случае). Ре5

акция связи — это сила, с которой связь действует на систему мате%

риальных точек или твердое тело. Сила реакции связи направлена

в сторону, противоположную направлению, в котором связь препят%

ствует перемещению рассматриваемого тела.

3.
Система сходящихся сил. Сходящимися называются силы, линии действия которых пересекаются в одной точке. Равнодействующая сходящихся сил равна геометрической сумме этих сил и приложена в точке их пересечения . Равнодействующая может быть найдена геометрич. способом – построением силового (векторного) многоугольника или аналитич. способом, проектируя силы на оси координат. Проекции силы на оси координат (для плоской сист.):Fx=F×cosa; Fy=F×cosb=F×sina; проекция >0, если направление составляющей силы совпадает с направл. оси. Модуль силы: ;направляющие косинусы: разложение силы на составляющие: , где – орт (единичный вектор) соответствующей оси.

Для пространственной системы: ,

Fx=Fcosa; Fy=Fcosb; Fz=Fcosg; ; .

Проекции равнодействующей системы сходящихся сил на координатные оси равна алгебраическим суммам проекций этих сил на соответствующие оси: Rx=åFix; Ry=åFiy; Rz=åFiz; .

Условия равновесия сист. сходящихся сил: геометрическое:

аналитические: åFix=0; åFiy=0; åFiz=0. Теорема о трех непараллельных силах: Если под действием трех сил тело находится в равновесии и линии действия двух сил пересекаются, то все силы лежат в одной плоскости и их линии действия пересекаются в одной точке.

4. Многоугольник сил, ломаная линия, которая строится для определения главного вектора (геометрической суммы) данной системы сил. Чтобы построить Многоугольник сил для системы

 
Рис. к ст. Многоугольник сил.  

сил F 1, F 2 ,..., F n (рис., а), надо от произвольной точки а поочерёдно отложить в выбранном масштабе вектор , изображающий силу F 1, от его конца отложить вектор , изображающий силу F 2, и т. д. и от конца m предпоследней силы отложить вектор , изображающий силу F n (рис., б). Фигура abc... mn и называется Многоугольник сил Вектор an, соединяющий в Многоугольник сил начало первой силы с концом последней, изображает геометрическую сумму R данной системы сил. Когда точка n совпадает с а, Многоугольник сил называется замкнутым; в этом случае R = 0. Правило Многоугольник сил может быть получено последовательным применением правила параллелограмма сил.

Построением Многоугольник сил пользуются при графическом решении задач статики для систем сил, расположенных в одной плоскости.





Поделиться с друзьями:


Дата добавления: 2016-09-03; Мы поможем в написании ваших работ!; просмотров: 513 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Человек, которым вам суждено стать – это только тот человек, которым вы сами решите стать. © Ральф Уолдо Эмерсон
==> читать все изречения...

2277 - | 2132 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.