Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Определение кинематических характеристик движения точки




Образец титульного листа

 

 

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ

УНИВЕРСИТЕТ СЕРВИСА И ЭКОНОМИКИ

 

Институт сервиса автотранспорта, коммунальной и бытовой техники

 

Кафедра технической механики

 

КОНТРОЛЬНАЯ РАБОТА №___

ПО ТЕОРЕТИЧЕСКОЙ МЕХАНИКЕ

Номер зачетной книжки _____

 

Номер варианта_____

 

Работу выполнил студент _____группы А.Н.Шигин

Работу проверил доцент В.Н. Шабаев

Санкт-Петербург

Теоретическая механика

Статика

ПЛОСКАЯ ПРОИЗВОЛЬНАЯ СИСТЕМА СИЛ

Задача 1. Определить реакции RA и RB опор балки, размеры и нагрузки которой показаны на рис.1, а.

Рис. 1

 

Решение. 1. Составление расчетной схемы. Объект равновесия – балка АС. Активные силы: F = 3 кH, пара сил с M = 4 кH∙м распределенная нагрузка с интенсивностью q = 1 кН/м, которуюзаменяем одной сосредоточенной силой Rq = q∙ 1 = 1 3 = 3 кH; приложенной к точке D на расстоянии 1,5 м от края консоли. Применяя принцип освобождаемости от связей изобразим в точках А и В реакции. На балку действует плоская произвольная система сил, в которой три неизвестных реакции и .

Ось х направим вдоль горизонтальной оси балки вправо, а ось у -вертикально вверх.

2. Условия равновесия:

.

 

3. Составление уравнений равновесия:

 

,(1)

, (2)

. (3)

 

4. Определение искомых величин, проверка правильности решения и анализ полученных результатов. Решая систему уравнений (1 – 3), определяем неизвестные реакции

из (1):

кН,

 

из (3): ,

 

из (2): кН.

 

Величина реакции RAх имеет отрицательный знак, значит направлена не так, как показано на рис. 18, а в противоположную сторону.

Для проверки правильности решения составим уравнение суммы моментов относительно точки Е.

.

Подставив в это уравнение значения входящих в него величин, получим:

- 0,58 ∙ 1 – 4 + 5,02 ∙ 3 – 3 ∙ 3,5 = 0.

 

Уравнение удовлетворяется тождественно, что подтверждает правильность решения задачи.

Задача 2. На балку с защемленным концом (рис. 2, а) действует распределенная по линейному закону нагрузка интенсивностью q = 0,2 кН/м. Сила F = 10 кH действует под углом α = 45о к оси балки, кроме того, приложена пара сил с моментом М = 4 кH ∙м. Определить реакцию заделки.

 

а) б)

Рис.2

Решение.

1. Составление расчетной схемы (рис. 19, б). Объектом равновесия является балка АВ. К ней приложены активные силы , пара сил с моментом ираспределенная по линейному закону нагрузка. Равнодействующая приложена в точке О,

Связью, наложенной на балку АВ,является жесткая заделка А. Применяя принцип освобождаемости от связей к балке АВ,заменим действие этой заделки на балку силами реакций и реактивным моментом . Рассмотрим теперь равновесие балки АВ как свободного твердого тела, на которое действуют, кроме активных сил, еще и реакции связи.

2. Усл овия равновесия:

.

 

3. Составление уравнений равновесия. Для плоской произвольной
системы сил условиям равновесия соответствуют три уравнения:

 

; (а)

; (б)

. (в)

 

Для балки с жёсткой заделкой в качестве моментальной точки лучше брать заделку, что позволит исключить лишние неизвестные.

4. Определение искомых величин, проверка правильности решения и анализ полученных результатов.
Из уравнения (а) находим:

.

Из уравнения (б) получаем:

.

Наконец, из уравнения (в) находим:

Проверка. Составим уравнение моментов относительно точки В, подставим найденные реакции:

 

.

Положительные значения реакций связей подтверждают правильность выбранных направлений этих сил.

Кинематика

Определение кинематических характеристик движения точки

Задача 1. Заданы уравнения движения точки М:

где х,у- координаты движущейся точки, см.

Установить вид траектории точки и для момента времени t=1 с найти положение точки на траектории, её скорость, полное, ка­сательное и нормальное ускорения, а также радиус кривизны тра­ектории.

Решение.

1. Преобразуем параметрические уравнения движения точки:

Получено уравнение окружности с центром в точке с коорди­натами х=-2 см; у = 3 см и радиусом R = 2 см. После определе­ния траектории имеется возможность изобразить её в декартовой системе координат (рис. 11.16) и установить положение точки М момент времени t = 1 с:

Если положение точки окажется вне траектории, следует пре­кратить дальнейшие расчёты и найти ошибку в предыдущих рас­чётах.

2. Найдём проекции скорости на оси координат:

В момент времени t = 1 с Vx= -3,628 см/с; Vy = -2,094 см/с.

3. Определим модуль скорости: В момент вре­мени t= lc V=4,189 см/с. Покажем на рис. 11.16 в масштабе составляющие скорости , и вектор скорости , который должен быть направлен по касательной к траектории. Если это не произошло, в расчётах допущена ошибка.

4. Найдём проекции ускорения на оси координат, учитывая, что и - сложные функции:

В момент времени t = 1 с ax= -8,014 см/с2; ay =- 5,503 см/с2.

5. Определим модуль ускорения: В момент вре­мени t = 1с

а = 9,721 см/с2.

Покажем на рис. 11.16 в масштабе составляющие ускорения ах, ау и вектор ускорения n, который должен быть направлен в сторону вогнутости траектории.

3.Вычислим касательное ускорение по формуле (11.28):

Положительный знак показывает, что движение точки М уско­ренное, то есть направления векторов скорости и касательного ускорения совпадают.

4. Определим нормальное ускорение:

Покажем на рисунке векторы τ и n,.

8.Определим радиус кривизны траектории:

Для окружности радиус кривизны траектории совпадает с ра­диусом окружности: ρ= R = 2 см. Результаты расчётов сведём в табл. 11.1.

Таблица 11.1

 

Динамика

ДИНАМИКА ТОЧКИ

Задача 1. В железнодорожных скальных выемках для защиты кюветов от попадания в них с откосов каменных осыпей устраивается «полка» DC. Учитывая возможность движения камня из наивысшей точки А откоса и полагая при этом его начальную скорость , определить наименьшую ширину полки b и скорость , с которой камень падает на нее. По участку АВ откоса, составляющему угол α с горизонтом и имеющему длину l, камень движется τ с. Коэффициент трения скольжения f камня на участке АВ считать постоянным, а сопротивлением воздуха пренебречь.

Дано: . Определить b и (рис. 10.3).

 

Рис. 10.3

Решение. Задачу разделим на два этапа. Первый – движение камня на участке АВ, второй – движение камня от точки В до С.

Первый этап. 1. Составление расчетной схемы. Ось проводим по направлению движения камня, ось - перпендикулярно к оси . Камень принимаем за материальную точку и показываем ее в текущем положении, изображаем действующие на камень (точку) силы: вес , нормальную реакцию и силу трения скольжения (рис. 10.4).

2.Выявление начальных условий.

При .

 

Рис. 10.4

 

3.Составление дифференциальных уравнений движения точки. Так как точка (камень) движется прямолинейно, то при направлении оси х вдоль траектории получим одно дифференциальное уравнение движения

 

;

 

сила трения

,

тогда

;

;

.

 

4.Интегрирование дифференциальных уравнений движения. Интегрируя дифференциальное уравнение дважды, получаем:

 

;

;

;

;

;

;

.

5.Определение постоянных интегрирования. Подставим начальные условия, т.е. в уравнения:

;

;

.

6.Нахождение неизвестных величин и исследование полученных результатов. После подстановки постоянных интегрирования С 1 и С 2 получаем уравнение скорости и уравнение движения:

;

.

Для момента времени τ, когда камень покидает участок АВ,

,

т.е.

;

.

 

Умножим первое уравнение на τ/ 2, после этого разделим его на второе. В результате получим:

 

; ;

.

Второй этап. Движение камня от точки В до точки С.

1.Составление расчетной схемы. Координатные оси покажем так, как это удобно для решения задачи, в нашем случае ось х параллельна горизонтали и проходит через точку В, ось у направляем вниз через точку В. Камень принимаем за материальную точку, показываем ее в текущем положении, изображаем действующую на камень силу тяжести (рис. 10.4).

2. Выявление начальных условий движения. При :

.

3.Составление дифференциальных уравнений движения. Так как движение точки происходит в плоскости ху, то число уравнений движения равно двум:

.

4.Интегрирование дифференциальных уравнений движения. Интегрируем дифференциальные уравнения дважды:

(a)

; (б)

(в)

. (г)

5. Определение постоянных интегрирования. Подставляем начальные условия: в уравнения (а – г):

,

откуда

.

6.Нахождение искомых величин и исследование полученных результатов. После подстановки постоянных интегрирования в уравнения (а –г) получаем следующие уравнения проекций скорости камня:

и уравнения его движения

.

Уравнение траектории камня найдем, исключив параметр t из уравнений движения:

;

– уравнение параболы.

В момент падения . Определим d из уравнения траектории:

; ;

 

.

 

Так как траекторией движения камня является ветвь параболы с положительными абсциссами ее точек, то d =2,11 м.

Минимальная ширина полки

.

Используя уравнение движения камня , найдем время Т движения камня от точки В до точки С

.

Скорость камня при падении найдем через проекции скорости на оси координат:

по формуле

.

 

Для момента падения t=T= 0,53 c

 

.

Скорость камня при падении равна 12,8 м/с.

 





Поделиться с друзьями:


Дата добавления: 2016-09-03; Мы поможем в написании ваших работ!; просмотров: 1890 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

80% успеха - это появиться в нужном месте в нужное время. © Вуди Аллен
==> читать все изречения...

2272 - | 2125 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.