Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Алгоритм решения способом сложения




Рациональные уравнения

Функция вида

P(x) = a0xn + a1xn – 1 + a2xn – 2 + … + an – 1x + an,

где n — натуральное, a0, a1,…, an — некоторые действительные числа, называется целой рациональной функцией.

Уравнение вида P(x) = 0, где P(x) — целая рациональная функция, называется целым рациональным уравнением.

Уравнение вида

P1(x) / Q1(x) + P2(x) / Q2(x) + … + Pm(x) / Qm(x) = 0,

где P1(x), P2(x), …,Pm(x), Q1(x), Q2(x), …, Qm(x) — целые рациональные функции, называется рациональным уравнением.

Решение рационального уравнения P (x) / Q (x) = 0, где P (x) и Q (x) — многочлены (Q (x) ¹ 0), сводится к решению уравнения P (x) = 0 и проверке того, что корни удовлетворяют условию Q (x) ¹ 0.

Пример 1. Решить уравнение

2x – 3 + 4(x – 1) = 5.

Решение. Последовательно раскроем скобки, приведём подобные члены и найдём x: 2x – 3 + 4x – 4 = 5, 2x + 4x = 5 + 4 + 3,

6x = 12, x = 2.

Ответ: 2.

Рациональные неравенства


Рациональное неравенство с одной переменной х — это неравенство вида — рациональные выражения, т.е. алгебраические выражения, составленные из чисел и переменной х с помощью операций сложения, вычитания, умножения, деления и возведения в натуральную степень.

Пример 1. Решить неравенство (х - 1) (х + 1) (х - 2) > 0.

Решение. Рассмотрим выражение f(х) = (х-1)(х + 1)(х-2).

Оно обращается в 0 в точках 1,-1,2; отметим эти точки на числовой прямой. Числовая прямая разбивается указанными точками на четыре промежутка (рис. 6), на каждом из которых выражение f (x) сохраняет постоянный знак. Чтобы в этом убедиться, проведем четыре рассуждения (для каждого из указанных промежутков в отдельности).

Возьмем любую точку х из промежутка (2, Эта точка расположена на числовой прямой правее точки -1, правее точки 1 и правее точки 2. Это значит, что х > -1, х >1, х > 2 (рис. 7). Но тогда x-1>0, х+1>0, х - 2 > 0, а значит, и f (х) > 0 (как произведение рациональное неравенство трех положительных чисел). Итак, на всем промежутке выполняется неравенство f (x) > 0.


Возьмем любую точку х из интервала (1,2). Эта точка расположена на числовой прямой правее точки-1, правее точки 1, но левее точки 2. Значит, х > -1, х > 1, но х < 2 (рис. 8), а потому x + 1>0,x-1>0,x-2<0. Но тогда f(x) <0 (как произведение двух положительных и одного отрицательного числа). Итак, на промежутке (1,2) выполняется неравенство f (x) < 0.


Возьмем любую точку х из интервала (-1,1). Эта точка расположена на числовой прямой правее точки -1, левее точки 1 и левее точки 2. Значит, х >-1, но х< 1, х <2 (рис. 9), а потому х + 1 > 0, х -1 <0, х - 2 < 0. Но тогда f (x) > 0 (как произведение двух отрицательных и одного положительного числа). Итак, на промежутке (-1,1) выполняется неравенство f (x)> 0.


Возьмем, наконец, любую точку х из открытого луча (-оо, -1). Эта точка расположена на числовой прямой левее точки -1, левее точки 1 и левее точки 2. Это значит, что x<-1, х< 1, х<2 (рис. 10). Но тогда x - 1 < 0, x + 1 < 0, х - 2 < 0, а значит, и f (x) < 0 (как произведение трех отрицательных чисел). Итак, на всем промежутке (-оо, -1) выполняется неравенство f (x) < 0.


Подведем итоги. Знаки выражения f (x) в выделенных промежутках таковы, как показано на рис. 11. Нас интересуют те из них, на которых выполняется неравенство f (x) > 0. С помощью геометрической модели, представленной на рис. 11, устанавливаем, что неравенство f (x) > 0 выполняется на интервале (-1, 1) или на открытом луче
О т в е т: -1 < х < 1; х > 2.

2.Показательными уравнениями и неравенствами считают такие уравнения и неравенства, в которых неизвестное содержится в показателе степени.

Решение показательных уравнений часто сводится к решению уравнения ах = аb, где а > 0, а ≠ 1, х – неизвестное. Это уравнение имеет единственный корень х = b, так как справедлива следующая теорема:

Теорема. Если а > 0, а ≠ 1 и ах1 = ах2, то х1 = х2.

Обоснуем рассмотренное утверждение.

Предположим, что равенство х1 = х2 не выполняется, т.е. х1 < х2 или х1 = х2. Пусть, например, х1 < х2. Тогда если а > 1, то показательная функция у = ах возрастает и поэтому должно выполняться неравенство ах1 < ах2; если 0 < а < 1, то функция убывает и должно выполняться неравенство ах1 > ах2. В обоих случаях мы получили противоречие условию ах1 = ах2.

Рассмотрим несколько задач.

Задача 1.

Решить уравнение 4 ∙ 2х = 1.

Решение.

Запишем уравнение в виде 22 ∙ 2х = 20 – 2х+2 = 20, откуда получаем х + 2 = 0, т.е. х = -2.

Ответ. х = -2.

Решение показательных неравенств часто сводится к решению неравенств ах > аb или ах < аb. Эти неравенства решаются с помощью свойства возрастания или убывания показательной функции.

Рассмотрим некоторые задачи.

Задача 1.

Решить неравенство 3х < 81.

Решение.

Запишем неравенство в виде 3х < 34. Так как 3 > 1, то функция у = 3х является возрастающей.

Следовательно, при х < 4 выполняется неравенство 3х < 34, а при х ≥ 4 выполняется неравенство 3х ≥ 34.

Таким образом, при х < 4 неравенство 3х < 34 является верным, а при х ≥ 4 – неверным, т.е. неравенство
3х < 81 выполняется тогда и только тогда, когда х < 4.

Ответ. х < 4.

Логарифмические уравнения

Уравнение, содержащее неизвестное под знаком логарифма или (и) в его основании, называется логарифмическим уравнением.

Простейшим логарифмическим уравнением является уравнение вида

log a x = b. (1)

Утверждение 1. Если a > 0, a ≠ 1, уравнение (1) при любом действительном b имеет единственное решение x = ab.

Пример 1. Решить уравнения:

a) log2 x = 3

Решение a) x = 23 или x = 8;

Перечислим и основные свойства логарифмической функции f (x) = log a x:

  1. Область определения логарифмической функции есть множество положительных чисел.
  2. Область значений логарифмической функции - множество действительных чисел.
  3. При a > 1 логарифмическая функция строго возрастает (0 < x 1 < x 2 Þ log a x 1 < log a x 2), а при 0 < a < 1, - строго убывает (0 < x 1 < x 2 Þ log ax 1 > log a x 2).
  4. log a 1 = 0 и log aa = 1 (a > 0, a ≠ 1).
  5. Если a > 1, то логарифмическая функция отрицательна при x Î (0;1) и положительна при x Î (1;+¥), а если 0 < a < 1, то логарифмическая функция положительна при x Î (0;1) и отрицательна при x Î (1;+¥).
  6. Если a > 1, то логарифмическая функция выпукла вверх, а если a Î (0;1) - выпукла вниз.

4. При изучении логарифмической функции мы рассматривали в основном неравенства вида
logа х < b и logа х ≥ b. Рассмотрим решение более сложных логарифмических неравенств. Обычным способом решения таких неравенств является переход от данного неравенства к более простому неравенству или системе неравенств, которая имеет то же самое множество решений.

Задача 1.

Решить неравенство lg (х + 1) ≤ 2 (1).

Решение.

1) Правая часть рассматриваемого неравенства смысл имеет при всех значенияхх, а левая часть – при х + 1 > 0, т.е. при х > -1.

2) Промежуток х > -1 называют областью определения неравенства (1). Логарифмическая функция с основанием 10 является возрастающей, следовательно, при условии х + 1 > 0 неравенство (1) выполняется, если х + 1 ≤ 100 (так как 2 = lg 100). Таким образом, неравенство (1) и система неравенств

{х > -1, (2)
{х + 1 ≤ 100,

равносильны, иными словами, множество решений неравенства (1) и системы неравенств (2) одно и то же.

3) Решая систему (2), находим -1 < х ≤ 99.

Ответ. -1 < х ≤ 99.

5.Метод подстановки

Алгоритм:

1) Выразить одну из переменных, из любого уравнения системы;

2) Подставить полученное выражение в другое уравнение;

3) Решить полученное уравнение с одной переменной;

4) Подставить найденное значение переменной в выражение для другой переменной и найти ее значение;

5) Записать ответ в виде пары чисел (х;у);

6) Сделать проверку.

Пример:

выражаем у из (1) уравнения: у=2х-9

подставляем во (2) уравнение: 5х+14х-63=44

решаем его: 19х=107; х=107/19

подставляем в выраженное у и получаем: у=43/19.

Ответ: (107/19; 43/19)

Алгоритм решения способом сложения

Алгоритм решения системы линейных уравнений с двумя неизвестными способом сложения.

1. Если требуется, путем равносильных преобразований уравнять коэффициенты при одной из неизвестных переменных в обоих уравнениях.

2. Складывая или вычитая полученные уравнения получить линейное уравнение с одним неизвестным

3. Решить полученное уравнение с одним неизвестным и найти одну из переменных.

4. Подставить полученное выражение в любое из двух уравнений системы и решить это уравнение, получив, таким образом, вторую переменную.

5. Сделать проверку решения.





Поделиться с друзьями:


Дата добавления: 2016-09-03; Мы поможем в написании ваших работ!; просмотров: 855 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Жизнь - это то, что с тобой происходит, пока ты строишь планы. © Джон Леннон
==> читать все изречения...

2295 - | 2065 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.134 с.