Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Функции формирование новых массивов из существующих

ЛАБОРАТОРНАЯ РАБОТА 4

Тема: Массивы в Mathcad

Столбец чисел называется вектором, а прямоугольная таблица чисел - матрицей. Общий термин для вектора или матрицы - массив. При работе с матрицами используется панель инструментов “Матрицы” (рис.1):

Рис.1

Обращение к элементу массива осуществляется путем записи имени массива и соответствующих индексных выражений, количество которых определяется размерностью массива.

На рисунке 2 показан фрагмент присваивания значений отдельным элементам массивов: векторов x,y и матриц A, B. Здесь же приведен вывод этих массивов

Рис.2

 

Начальное значение индексных выражений определяется системной переменной ORIGIN и по умолчанию ее значение равно 0.

Верхний индекс – позволяет обратиться к отдельному столбцу массива. Чтобы вставить верхний индекс, введите имя массива, а затем нажать клавиши [Ctrl + 6] или нажать на кнопку :

Рис.3

Создание вектора и матрицы

Заполнение шаблона:

· введите имя матрицы и знак присваивания (двоеточие)

· щелкните по значку в панели “Матрицы”. В появившейся диалоговой панели введите число строк и столбцов матрицы.

· После нажатия кнопки OK открывается поле для ввода элементов матрицы.

· Заполните метки - заполнители соответствующими значениями.

В MathCAD имеется большое количество встроенных функций для действий над матрицами и векторами. Рассмотрим некоторые из них.

Вычисление максимального и минимального элементов матрицы или вектора производится с помощью встроенных функций Max(A) и Min(A).

Пример: Вычислить максимальный и минимальный элемент произвольной матрицы, например:

Рис. 4. Вычисление максимального и минимального элемента матрицы.

 

Определение количества столбцов и строк в матрице удобно для проверки действий над многомерными матрицами и векторами. Оно производится с помощью встроенных функций Cols(A) – число столбцов матрицы А и Rows(A) – число строк матрицы А.

Пример. Определить число строк и столбцов в произвольной матрице, например

Рис.5.

 

Единичная матрица размером N формируется встроенной функцией Idenfity(N), а след матрицы (сумма элементов главной диагонали)– встроенной функцией tr(A):

Рис.6 Формирование единичной матрицы и вычисление следа матрицы.

Функции формирование новых массивов из существующих

· augment (A, B) - формирует массив, расположением A и B бок о бок, причем массивы A и B должны иметь одинаковое число строк.

· stack (A, B) - формирует массив, расположением A над B, причем массивы A и B должны иметь одинаковое число столбцов.

· submatrix (A, ir, jr, ic, jc) - формирует подматрицу, содержащую строки с ir по jr и столбцы с ic по jc матрицы A.

Рис.7

 

Рис.8

Задание №1. Вычислить значение матричного выражения

Рис. 9

 

Рис.10.

Задание №3. Решить систему линейных уравнений

Рис.11

Задание 1. Вычислите значение матричного выражения, для своего варианта.(См. рис.9)

Задание 2. Двумя способами (матричным и методом Крамера)решить систему линейных уравнений.(См. рис.11)

Варианты заданий

Номер варианта Матричное выражение Система линейных уравнений
    ((QT34+D43)H32)T=? X1-2X2+6X3=-28 3X1 +3X3=-6 -2X1+X2-4X3=15
    (BT23+H32)(E22+D22)=? 2X1 +X3=6 4X1-3X2-2X3=-1   2X2+7X3=12
    (QT34D34+E44)T=? -3x1+2x3=5 2x1+4x2+4x3=-2 x1-2x2+5x3=31
    (E33+H33+DT33)Q34=? 3x2+2x3=2 -2x1+6x2=-22 4x1-2x2-x3=20
    ((E44+DT44)Q43-B43)T=? 5x1+2x2+x3=21 -2x1-4x2+2x3=-2 7x2+8x3=-14
    ((H34B43)T+E33-D33)T=? 6x1-2x2=18 4x1+3x2+4x3=-1 6x2+x3=-18
    ((D34+B34)Q43)T+E33=? 8x2+9x3=38 2x1+4x2-2x3=-14 -3x1+2x2+x3=-7
    (DT34(E33+B33+H33))T=? 2x1+4x2+x3=2 -x1+6x2+8x3=17 3x2-12x3=-54
    D43(E33+H33)T+QT34=? -x2-4x3=-18 -8x1+2x2+2x3=12 4x1+4x2=8
    (D33+E33)T+H34Q43=? 7x1+6x2+8x3=64 2x1+3x2-5x3=-19 4x1+5x2+2x3=29
    (Q34BT34+E33-D33)T=? 9x1+7x2-x3=39 -3x2+4x3=-9 3x1+x2+9x3=9
    (E33+D33)T(Q34B43)=? 5x1+x3=25 6x1+7x2+10x3=81 -2x1+4x2+x3=1
    (D43+HT34)(E33+Q33)T=? -x1+8x2-3x3=1 8x1+2x2=-38 -5x2=7x3=-34
    (((E44+Q44)D42)H23)T=? -6x1+7x2-4=-44 3x1+6x2+6x3=57 5x1+4x2+7x3=71
    ((E33+H33)T+B33)D32=? -x1-7x2+6x3=-14 2x1+5x2+2x3=19 9x1+6x2+6x3=69

Задание 3. Сформировать вектор x из N элементов по правилу f1(x) и матрицу А размером K х L по правилу f2(i,j).

Номер варианта N
1      
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       
       

Задание 4 Для матрицы А из задания 3 вывести число строк и столбцов. Выделить из матрицы А произвольную подматрицу размера 3 х 3 и сложить её с единичной матрицей. Bычислить след полученной матрицы.



<== предыдущая лекция | следующая лекция ==>
Атрибут Alt позволяет вставлять текст вместо картинки при невозможности ее просмотреть | Рекомендации по выполнению
Поделиться с друзьями:


Дата добавления: 2016-09-03; Мы поможем в написании ваших работ!; просмотров: 501 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Два самых важных дня в твоей жизни: день, когда ты появился на свет, и день, когда понял, зачем. © Марк Твен
==> читать все изречения...

2254 - | 2077 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.109 с.