Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Ультразвук; шкала интенсивностей ультразвука; особенности ультразвука; воздействие ультразвука на организм, применение в медицине




Ультразвуком называют продольные механические волны с частотами колебаний выше 20 КГц. Как и звуковые волны, ультразвуковая волна представляет собой чередования сгущений и разряжений среды. В каждой среде скорость распространения, как звука, так и ультразвука – одинакова. Ввиду этого, длина ультразвуковых волн в воздухе меньше чем 17 мМ (V = λ * ν; Vвозд = 330 м/с).

Источниками ультразвука являются специальные электромеханические излучатели. Один тип излучателей работают на основе явления магнитострикции, когда в переменном магнитном поле изменяются размеры некоторых тел (например, никелевого стержня). Такие излучатели позволяют получить колебания с частотами от 20 до 80 КГц. От источника переменного тока с указанными частотами напряжение подается на никелевый стержень, продольный размер стержня изменяется с частотой переменного тока, и боковыми гранями образца излучается ультразвуковая волна (Рис 4).

Второй тип излучателей работает на основе пьезоэффекта, когда в переменном электрическом поле изменяются размеры некоторых тел – материалов из сегнетоэлектриков. Для этого типа излучателей можно получать более высокочастотные колебания – до 500 МГц. От источника переменного тока напряжение также подается на боковые грани стержня изготовленного из сегнетоэлектрика (кварц, турмалин), продольный размер стержня при этом изменяется с частотой переменного тока, и боковыми гранями образца излучается ультразвуковая волна (Рис 5). И в первом и во втором случаях ультразвук излучается вследствие колебаний боковых граней стержня, в последнем случае эти грани металлизированы для подведения тока к образцу.

Приемники ультразвука работают по принципу обратных явлений магнитострикции и пьезоэффекта: ультразвуковая волна вызывает колебания линейных размеров тел, когда тела находятся в поле ультразвуковой волны, колебания размеров сопровождается появлением либо переменного магнитного, либо переменного электрического полей в материале. Эти поля, возникающие в соответствующем датчике, регистрируются каким либо индикатором, например осциллографом. Чем интенсивнее ультразвук, тем больше амплитуда механических колебаний образца – датчика и тем больше амплитуда возникающих переменных магнитного или электрического полей.

 

Особенности ультразвука.

Как уже было сказано выше в каждой среде скорость распространения, как звука, так и ультразвука – одинакова. Наиболее важной особенностью ультразвука является узость ультразвукового пучка, что позволяет воздействовать на какие либо объекты локально. В неоднородных средах с мелкими неоднородностями, когда размеры включений примерно равны но больше длины волны (L ≈ λ) имеет место явление дифракции. Если размеры включений много больше длины волны (L >> λ) имеет место прямолинейность распространения ультразвука. В этом случае возможно получать ультразвуковые тени от таких включений, что используется при различных видах диагностики – как технической, так и медицинской. Важным теоретическим моментом при использовании ультразвука является прохождение ультразвука из одной среды в другую. Такая характеристика волн, как частота при этом не изменяется. Напротив, скорость и длина волны при этом могут изменяться. Так в воде скорость акустических волн равна 1400 м/с, когда в воздухе – 330 м/с. Проникновение ультразвука в другую среду характеризуется коэффициентом проникновения (β). Он определяется как отношение интенсивности волны попавшей во вторую среду к интенсивности, падающей волны: β = I2 / I1 – Рис 6. Этот коэффициент зависит от соотношения акустических импедансов двух сред. Акустическим импедансом называют произведение плотности среды на скорость распространения волн в данной среде: Z1 = ρ1 * V1, Z2 = ρ2 * V2. Коэффициент проникновения наибольший – близкий к единице, если акустические импедансы двух сред примерно равны: ρ1 * V1,ρ2 * V2. В случае, если импеданс второй среды много больше, чем первой, коэффициент проникновения – ничтожно мал. В общем случае коэффициент β вычисляют по формуле:

Для перехода ультразвука из воздуха в кожу человека β = 0,08 %, для перехода из глицерина в кожу β = 99,7 %.

Поглощение ультразвука в различных средах.

В однородных средах ультразвук поглощается, как и любой вид излучений – по закону показательной функции:

Величину L’ – называют слоем половинного поглощения – это то расстояние, на котором интенсивность волны уменьшается вдвое. Слой половинного поглощения зависит от частоты ультразвука и самой ткани – объекта. С увеличением частоты величина L1/2 -уменьшается. Для различных тканей организма имеют место следующие значения степени поглощения ультразвука:

Вещество Вода Кровь Хрящ Кость
L’ 300 см 2 – 8 см 0,24 см 0,05 см

 

Действие ультразвука на ткани организма.

Имеет место три вида действия ультразвука:

- механическое,

- тепловое,

- химическое.

Степень воздействия того или другого вида определяется интенсивностью. В связи с этим в медицине различают три уровня интенсивностей ультразвуков:

1 уровень - до 1,5 Вт / см2,

2 уровень - от 1,5 до 3 Вт / см2,

3 уровень - от 3 до 10 Вт / см2.

Все три вида воздействия ультразвука на ткани связано с явлением кавитации - это кратковременные (половины периодов колебаний частиц среды) возникновения микроскопических полостей в местах разряжения среды. Эти полости заполняются парами жидкости, и в фазе повышенного давления (другая половина периода колебаний частиц среды) происходит схлопывание образовавшихся полостей. При больших интенсивностях волн схлопывание полостей с находящимися в них парами жидкости может привести разрушающему механическому воздействию. Естественно схлопывание микрополостей сопровождается тепловым эффектом. С процессом схлопывания микрополостей связано и химическое действие ультразвука, так как при этом частицы среды достигают больших скоростей поступательного движения, что может вызвать явление ионизации, разрыва химических связей, образования радикалов. Образовавшиеся радикалы могут вступать во взаимодействие с белками, лмпидами, нуклеиновыми кислотами и вызывать нежелательные воздействия химической природы.

 

6.Особенности тока крови по крупным сосудам, средним и мелким сосудам, капиллярам;
ток крови при сужении сосуда, звуковые эффекты.

Скорость кровотока в разных сосудах различна. Ориентировочные значения этой скорости представлены в табл. 2.1.

 

Таблица 2.1. Скорость и давление крови в различных сосудах

 

Сосуды Диметр, мм Скорость, 10-2 м/с Давление, мм рт. ст.
Аорта   30-50 50-150
Артерии 10-5 20-50 80-20
Артериолы 0,1-0,5 1-20 50-20
Капилляры 0,5-0,01 0,01-0,05 20-10
Венулы 0,1-0,2 0,1-1,0 10-5
Вены 10-30 10-20 (-5М+5)

 

На первый взгляд, кажется, что приведенные значения противоречат уравнению неразрывности - в тонких капиллярах скорость кровотока меньше чем в артериях. Однако это несоответствие кажущееся. Дело в том, что в табл. 2.1 приведен диаметр одного сосуда, но по мере разветвления сосудов площадь каждого из них уменьшается, а суммарная площадь разветвления возрастает. Так, суммарная площадь всех капилляров (примерно 2000 см2) в сотни раз превышает площадь аорты - этим и объясняется такая малая скорость крови в капиллярах (в 500 - 600 раз меньше, чем в аорте).

В дальнейшем, когда капилляры сливаются в венулы, в вены, вплоть до полой вены, суммарный просвет сосудов опять уменьшается и, скорость течения крови снова увеличивается. Однако, в силу ряда причин, скорость кровотока при впадении полой вены в сердце увеличивается не до исходного значения, а примерно, до ½ от него (рис. 2.7).


 

 

 

 


 

 

 

Аорта артерии артериолы капилляры венулы вены полая вена

 

Рис. 2.7. Распределение скоростей кровотока в различных отделах

сердечно-сосудистой системы

 

В капиллярах и венах кровоток постоянен, в других отделах сердечно-сосудистой системы наблюдаются пульсовые волны.

Распространяющуюся по аорте и артериям волну повышенного давления, вызванную выбросом крови из левого желудочка сердца в период систолы, называют пульсовой волной.

При сокращении сердечной мышцы (систола) кровь выбрасывается из сердца в аорту и отходящие от нее артерии. Если бы стенки этих сосудов были жесткими, то давление, возникающее в крови на выходе из сердца, со скоростью звука передалось бы к периферии. Однако упругость стенок сосудов приводит к тому, что во время систолы кровь, выталкиваемая сердцем, растягивает аорту, артерии и артериолы. Крупные сосуды воспринимают за время систолы больше крови, чем ее оттекает к периферии. Систолическое давление (РС) человека в норме равно приблизительно 16 кПа. Во время расслабления сердца (диастола) растянутые кровеносные сосуды спадают и потенциальная энергия, сообщенная им сердцем через кровь, переходит в кинетическую энергию тока крови, при этом поддерживается диастолическое давление (РД), приблизительно равное 11 кПа.

Чем дальше от сердца находится артерия, тем колебания давления в сосудах всё более сглаживаются (рис. 2.8).

 


Р, Па Р, Па

 

t, с t, с

 

 

1 - в аорте 2 - в артериолах

Рис. 2.8. Колебания давления в сосудах при прохождении пульсовых волн

Амплитудой пульсовой волны Р0(х) (пульсовое давление) называется разность между максимальным и минимальным значениями давлений в данной точке сосуда (x). В начале аорты амплитуда волны Р0,max равна разности систолического (РС) и диастолического (РД) давлений: Р0,max = РС - РД. Затухание амплитуды пульсовой волны при ее распространении вдоль сосудов можно представить зависимостью:

 

где β - коэффициент затухания, увеличивающийся с уменьшением радиуса сосуда.

Скорость распространения пульсовой волны, измеренная экспериментально, составляет » 6 - 8 м/с, что в 20 - 30 раз больше, чем скорость движения частиц крови = 0,3 - 0,5 м/с. За время изгнания крови из желудочков (время систолы) tс = 0,3 с пульсовая волна успевает распространиться на расстояние

Lп = ·tс» 2м,

то есть охватить все крупные сосуды - аорту и артерии. Это означает, что фронт пульсовой волны достигнет конечностей раньше, чем начнется спад давления в аорте.

Экспериментальное определение скорости пульсовой волны лежит в основе диагностики состояния сосудов. С возрастом упругость сосудов увеличивается в 2 - 3 раза, а, следовательно, возрастает и скорость пульсовой волны.

Как ясно из опытов и из общих представлений о работе сердца, пульсовая волна не является синусоидальной

(гармонической) (рис. 2.9).

 

 


1 - артерия после прохождения 2 - через артерию проходит

пульсовой волны фронт пульсовой волны

 

 

3 - пульсовая волна в артерии 4 - спад повышенного давления

 

Рис. 2.9. Профиль артерии при прохождении пульсовой волны.

 

Скорость пульсовой волны в крупных сосудах следующим образом зависит от их параметров (формула Моенса-Кортевега):

, где Е - модуль упругости (модуль Юнга); ρ - плотность вещества сосуда; h - толщина стенки сосуда; d - диаметр сосуда.

Интересно сопоставить эту формулу с выражением для скорости распространения звука в тонком стержне:

, Е - модуль Юнга; ρ - плотность вещества стержня

У человека с возрастом модуль упругости сосудов возрастает, поэтому, становится больше и скорость пульсовой волны.

 

Наряду с пульсовой волной в системе «сосуд-кровь» могут распространяться и звуковые волны, скорость которых очень велика по сравнению со скоростью движения частиц крови и скоростью пульсовой волны. Таким образом, в системе сосуд-кровь можно выделить три основных процесса движения:

1) перемещение частиц крови ( = 0,5 м/с);

2) распространение пульсовой волны ( ~ 10 м / с);

3) распространение звуковых волн ( ~ 1500 м / с).

 

Течение крови в артериях в норме является ламинарным, небольшая турбулентность возникает вблизи клапанов. При патологии, когда вязкость бывает меньше нормы, число Рейнольдса может превышать критическое значение и движение станет турбулентным. Турбулентное течение связано с дополнительной затратой энергии при движении жидкости, что в случае крови приводит к добавочной работе сердца.

Шум, возникающий при турбулентном течении крови, может быть использован для диагностирования заболеваний. Этот шум прослушивают на плечевой артерии при измерении давления крови методом звуков Короткова.

Течение воздуха в носовой полости в норме ламинарное. Однако при воспалении или каких-либо других отклонениях от нормы оно может стать турбулентным, что повлечет дополнительную работу дыхательных мышц.

Переход от ламинарной формы течения к турбулентной происходит не только при течении в трубе (канале), он характерен почти для всех течений вязкой жидкости. В частности, обтекание жидкостью профиля корабля или подводной лодки, тела рыбы или крыла самолета или птицы также характеризуется ламинарно-турбулентным переходом, при этом в формулу нужно подставить характерный размер обтекаемого тела и константу, зависящую от формы тела.





Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 2065 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Жизнь - это то, что с тобой происходит, пока ты строишь планы. © Джон Леннон
==> читать все изречения...

2292 - | 2064 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.