Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Операторный метод анализа переходных процессов




 

ЗАДАНИЯ

 

1.1. Провести анализ переходного процесса в цепи с одним энергоемким элементом операторным методом. Варианты схем и величины параметров элементов цепей приведены в табл. 1.

1.1.1. Определить заданный ток и напряжения на элементах цепи операторным методом.

1.1.2. Провести анализ полученных результатов, сравнить их с результатами расчета переходного процесса классическим методом.

1.2. Операторным методом провести анализ переходного процесса в цепи с двумя энергоемкими элементами, схема и величины параметров которой заданы в табл. 2.

1.2.1. Операторным методом рассчитать заданный ток в цепи с двумя энергоемкими элементами.

1.2.2. Провести анализ переходного процесса в цепи с двумя энергоемкими элементами и сравнить полученные результаты с результатами анализа классическим методом.

 

2.1.1. Определим заданный ток и напряжения на элементах в переходном режиме при замыкании ключа S в цепи с одним энергоемким элементом (рис. 1).

Анализируя процессы в цепи до коммутации, определяем начальное значение тока индуктивности:

Независимое начальное значение тока индуктивности на основании первого закона коммутации также равно нулю: .

Составим операторную схему замещения цепи после коммутации (рис. 5).

 

Рис. 5

 

Для этого заменим идеализированные пассивные элементы их операторными схемами замещения, ЭДС идеализированного источника напряжения E – операторной ЭДС , мгновенные значения токов и напряжений ветвей – операторными токами и напряжениями соответственно.

Составим уравнения электрического равновесия цепи в операторной форме используя метод контурных токов:

 

Решение уравнений электрического равновесия цепи с помощью формул Крамера позволяет определить контурные токи:

 

 

 

Тогда операторные изображения токов ветвей цепи:

, ,

а искомый ток будет равен разности контурных токов:

 

 

Учитывая, что , находим выражения для искомых тока и напряжений на элементах электрической цепи после замыкания ключа S:

 

 

 

 

Рис. 6

2.1.2. Ток после замыкания ключа S изменяется скачком. С ростом тока индуктивности, ток начинает увеличиваться, поскольку к резистору параллельно подключается ветвь с резистором . Так как сопротивление резисторов и равны, то в установившемся режиме токи второй и третьей ветвей равны, при этом сопротивление индуктивности постоянному току равно нулю.

Результаты полученные операторным методом полностью совпадают с результатами расчета цепи классическим методом.

 

2.2. Анализ переходного процесса в цепи с двумя энергоемкими элементами операторным методом

2.2.1. Операторным методом рассчитаем ток второй ветви цепи (рис. 4) при замыкании ключа S. Величины параметров элементов и искомая реакция цепи приведены в (табл. 2).

Проведем анализ цепи до коммутации и определим независимые начальные условия: ток индуктивности и напряжение на конденсаторе .

Изобразим операторную схему замещения цепи после коммутации (рис. 7), для этого заменим идеализированные пассивные элементы их операторными схемами замещения, ЭДС идеализированного источника напряжения - операторной ЭДС , мгновенные значения токов и напряжений ветвей их операторными изображениями и соответственно.

Рис. 7

Составим уравнение электрического равновесия цепи в операторной форме методом двух узлов:

 

 

Определим операторный ток первой ветви

(11)

Изображение тока первой ветви можно записать в виде отношения двух полиномов от , не имеющих общих корней

(12)

причем степень полинома выше, чем степень полинома , а уравнение не имеет кратных корней, то для перехода от изображения к оригиналу можно воспользоваться теоремой разложения:

, (13)

где - корни уравнения .

Поскольку знаменатель уравнения (11) имеет один корень равный нулю, т.е. , то для нахождения оригинала тока воспользуемся другой формулой теоремы разложения:

(14)

Подставим численные значения в уравнение (11).

 

Запишем

и значения функций и при

Найдем корни уравнения

 

.

Вычислим производную и ее значения при и

Определим при и :

Подставим полученные значения в формулу

 

 

 

Рис. 8

2.2.2. Анализ переходного процесса в разветвленной цепи с двумя энергоемкими элементами (рис. 4) операторным и классическим методами показал, что переходный процесс в ней носит колебательный характер. Полученные результаты не зависят от метода расчета, однако трудоемкость расчета различными методами не эквивалентна.

Поскольку коэффициент затухания , то колебания затухают достаточно быстро в цепи.






Поделиться с друзьями:


Дата добавления: 2016-07-29; Мы поможем в написании ваших работ!; просмотров: 855 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Победа - это еще не все, все - это постоянное желание побеждать. © Винс Ломбарди
==> читать все изречения...

2239 - | 2072 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.